Basic Research in Cardiology

, 109:415 | Cite as

TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury

  • Yi Liu
  • Kun Lian
  • Lijian Zhang
  • Rutao Wang
  • Fu Yi
  • Chao Gao
  • Chao Xin
  • Di Zhu
  • Yan Li
  • Wenjun Yan
  • Lize Xiong
  • Erhe Gao
  • Haichang WangEmail author
  • Ling TaoEmail author
Original Contribution


NLRP3 inflammasome is necessary for initiating acute sterile inflammation. Recent studies have demonstrated that NLRP3 inflammasome is up-regulated and mediates myocardial ischemia/reperfusion (MI/R) injury. However, the signaling pathways that lead to the activation of NLRP3 inflammasome by MI/R injury have not been fully elucidated. C57BL/6J mice were subjected to 30 min ischemia and 3 or 24 h reperfusion. The ischemic heart exhibited enhanced inflammasome activation as evidenced by increased NLRP3 expression and caspase-1 activity and increased IL-1β and IL-18 production. Intramyocardial NLRP3 siRNA injection or an intraperitoneal injection of BAY 11-7028, an inflammasome inhibitor, attenuated macrophage and neutrophil infiltration and decreased MI/R injury, as measured by cardiomyocyte apoptosis and infarct size. The ischemic heart also exhibited enhanced interaction between Txnip and NLRP3, which has been shown to be a mechanism for activating NLRP3. Intramyocardial Txnip siRNA injection also decreased infarct size and NLRP3 activation. In vitro experiments revealed that NLRP3 was expressed in cardiac microvascular endothelial cells (CMECs), but was hardly expressed in cardiomyocytes. Simulated ischemia/reperfusion (SI/R) stimulated NLRP3 inflammasome activation in CMECs, but not in cardiomyocytes. Moreover, CMECs subjected to SI/R injury increased interactions between Txnip and NLRP3. Txnip siRNA diminished NLRP3 inflammasome activation and SI/R-induced injury, as measured by LDH release and caspase-3 activity in CMECs. ROS scavenger dissociated TXNIP from NLRP3 and inhibited the activation of NLRP3 inflammasome in the CMECs. For the first time, we demonstrated that TXNIP-mediated NLRP3 inflammasome activation in CMECs was a novel mechanism of MI/R injury. Interventions that block Txnip/NLRP3 signaling to inhibit the activation of NLRP3 inflammasomes may be novel therapies for mitigating MI/R injury.


Ischemia/reperfusion TXNIP NLRP3 inflammasome Cardiac microvascular endothelial cells 



This work was supported by program for Chinese National Science Fund for Distinguished Young Scholars (Grant No. 81225001), National Key Basic Research Program of China (973 Program, 2013CB531204), New Century Excellent Talents in University (Grant No. NCET-11-0870), Chinese National Science Funds (Grants Nos. 81070676 and 81170186), Innovation Team Development Grant by China Department of Education (2010CXTD01) and Major Science and Technology Projects of China “Significant New Drug Development” (Grant No. 2012ZX09J12108-06B).

Conflict of interest

The authors declare that no conflict of interest exists.

Supplementary material

395_2014_415_MOESM1_ESM.tif (324 kb)
Supplement Fig1 NLRP3 siRNA had no effect on the expression of Txnip in CMECs. CMECs were transfected with NLRP3 siRNA for 48 hours, and Txnip expression was determined using Western blots (n = 5 per group). Data were expressed as mean ± SEM (TIFF 324 kb)
395_2014_415_MOESM2_ESM.tif (1.6 mb)
Supplement Fig 2 NLRP3 siRNA decreased the E-selectin and ICAM-1 expression in CMECs subjected to SI/R. CMECs were transfected with NLRP3 siRNA for 48 hours and then subjected to SI/R. E-selectin (A) and ICAM-1 (B) expression express was determined by western-blot (n = 5 per group). Data were expressed as mean ± SEM. *P<0.05 vs. Sham group; # P<0.05 vs. Vehicle (TIFF 1,627 kb)
395_2014_415_MOESM3_ESM.tif (3.6 mb)
Supplement Fig3 Txnip overexpression exacerbated NLRP3 inflammasome activation and SI/R injury in CMECs. A) CMECs were transfected with Txnip-GFP for 24 hours, and Txnip expression was determined using Western blots (n = 5 per group). B) CMECs were transfected with Txnip-GFP for 24 hours and then were subjected to SI/R injury followed by 24 hours of LPS treatment, and then were subjected to SI/R injury. IL-1β content was determined using ELISA (n = 6 per group).C and D) CMECs were treated with Txnip-GFP for 24 hours and then subjected to SI/R injury. LDH release and caspase-3 activity were determined using enzyme activity assay kit (n = 6 per group). Data were expressed as mean ± SEM. $$ P<0.01 vs. Control group, *P<0.05, **P<0.01 vs. Sham group; # P<0.05 vs. Vehicle group (TIFF 3,671 kb)


  1. 1.
    Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, Tersteeg C, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP (2010) Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 121:80–90. doi: 10.1161/CIRCULATIONAHA.109.880187 PubMedCrossRefGoogle Scholar
  2. 2.
    Baars T, Konorza T, Kahlert P, Mohlenkamp S, Erbel R, Heusch G, Kleinbongard P (2013) Coronary aspirate TNF alpha reflects saphenous vein bypass graft restenosis risk in diabetic patients. Cardiovasc Diabetol 12:12. doi: 10.1186/1475-2840-12-12 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705PubMedCrossRefGoogle Scholar
  4. 4.
    Cook-Mills JM, Deem TL (2005) Active participation of endothelial cells in inflammation. J Leukoc Biol 77:487–495PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022PubMedCrossRefGoogle Scholar
  6. 6.
    Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022PubMedCrossRefGoogle Scholar
  7. 7.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677. doi: 10.1126/science.1156995 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ (2010) A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 107:1445–1453. doi: 10.1161/CIRCRESAHA.110.223925 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Heidemann J, Domschke W, Kucharzik T, Maaser C (2006) Intestinal microvascular endothelium and innate immunity in inflammatory bowel disease: a second line of defense? Infect Immun 74:5425–5432PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Heusch G, Kleinbongard P, Skyschally A (2013) Myocardial infarction and coronary microvascular obstruction: an intimate, but complicated relationship. Basic Res Cardiol 108:380. doi: 10.1007/s00395-013-0380-y PubMedCrossRefGoogle Scholar
  11. 11.
    Hoetzenecker K, Assinger A, Lichtenauer M, Mildner M, Schweiger T, Starlinger P, Jakab A, Berenyi E, Pavo N, Zimmermann M, Gabriel C, Plass C, Gyongyosi M, Volf I, Ankersmit HJ (2012) Secretome of apoptotic peripheral blood cells (APOSEC) attenuates microvascular obstruction in a porcine closed chest reperfused acute myocardial infarction model: role of platelet aggregation and vasodilation. Basic Res Cardiol 107:292. doi: 10.1007/s00395-012-0292-2 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–382PubMedCrossRefGoogle Scholar
  13. 13.
    Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393. doi: 10.1073/pnas.0908698106 PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Jin C, Flavell RA (2010) Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30:628–631. doi: 10.1007/s10875-010-9440-3 PubMedCrossRefGoogle Scholar
  15. 15.
    Jordan JE, Zhao ZQ, Vinten-Johansen J (1999) The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 43:860–878PubMedCrossRefGoogle Scholar
  16. 16.
    Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604. doi: 10.1161/CIRCULATIONAHA.110.982777 PubMedCrossRefGoogle Scholar
  17. 17.
    Kleinbongard P, Bose D, Baars T, Mohlenkamp S, Konorza T, Schoner S, Elter-Schulz M, Eggebrecht H, Degen H, Haude M, Levkau B, Schulz R, Erbel R, Heusch G (2011) Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res 108:344–352. doi: 10.1161/CIRCRESAHA.110.235713 PubMedCrossRefGoogle Scholar
  18. 18.
    Liu Y, Ma Y, Wang R, Xia C, Zhang R, Lian K, Luan R, Sun L, Yang L, Lau WB, Wang H, Tao L (2011) Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells. Antioxid Redox Signal 15:1769–1778. doi: 10.1089/ars.2010.3764 PubMedCrossRefGoogle Scholar
  19. 19.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRefGoogle Scholar
  20. 20.
    Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166:1–15. doi: 10.1111/j.1365-2249.2011.04440.x PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 108:19725–19730. doi: 10.1073/pnas.1108586108 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW (1993) Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am J Physiol 264:H639–H652PubMedGoogle Scholar
  23. 23.
    Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J (1999) Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274:21645–21650PubMedCrossRefGoogle Scholar
  24. 24.
    Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815PubMedCrossRefGoogle Scholar
  25. 25.
    Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA (2001) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci USA 98:2871–2876PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sandanger O, Ranheim T, Vinge LE, Bliksoen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99:164–174. doi: 10.1093/cvr/cvt091 PubMedCrossRefGoogle Scholar
  27. 27.
    Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256PubMedCrossRefGoogle Scholar
  28. 28.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. doi: 10.1016/j.cell.2010.01.040 PubMedCrossRefGoogle Scholar
  29. 29.
    Steffens S, Montecucco F, Mach F (2009) The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb Haemost 102:240–247. doi: 10.1160/TH08-12-0837 PubMedGoogle Scholar
  30. 30.
    Stutz A, Golenbock DT, Latz E (2009) Inflammasomes: too big to miss. J Clin Invest 119:3502–3511. doi: 10.1172/JCI40599 PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Proc Natl Acad Sci USA 101:11471–11476PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4:95–104PubMedCrossRefGoogle Scholar
  33. 33.
    Wanderer AA (2008) Ischemic-reperfusion syndromes: biochemical and immunologic rationale for IL-1 targeted therapy. Clin Immunol 128:127–132. doi: 10.1016/j.clim.2008.03.514 PubMedCrossRefGoogle Scholar
  34. 34.
    Wen H, Ting JP, O’Neill LA (2012) A role for the NLRP3 inflammasome in metabolic diseases–did warburg miss inflammation? Nat Immunol 13:352–357. doi: 10.1038/ni.2228 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yang D, Guo S, Zhang T, Li H (2009) Hypothermia attenuates ischemia/reperfusion-induced endothelial cell apoptosis via alterations in apoptotic pathways and JNK signaling. FEBS Lett 583:2500–2506. doi: 10.1016/j.febslet.2009.07.006 PubMedCrossRefGoogle Scholar
  36. 36.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135PubMedCrossRefGoogle Scholar
  37. 37.
    Yin Y, Yan Y, Jiang X, Mai J, Chen NC, Wang H, Yang XF (2009) Inflammasomes are differentially expressed in cardiovascular and other tissues. Int J Immunopathol Pharmacol 22:311–322PubMedPubMedCentralGoogle Scholar
  38. 38.
    Yoshioka J, Chutkow WA, Lee S, Kim JB, Yan J, Tian R, Lindsey ML, Feener EP, Seidman CE, Seidman JG, Lee RT (2012) Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. J Clin Invest 122:267–279. doi: 10.1172/JCI44927 PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140. doi: 10.1038/ni.1831 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yi Liu
    • 1
  • Kun Lian
    • 1
  • Lijian Zhang
    • 1
  • Rutao Wang
    • 1
  • Fu Yi
    • 1
  • Chao Gao
    • 1
  • Chao Xin
    • 1
  • Di Zhu
    • 1
  • Yan Li
    • 1
  • Wenjun Yan
    • 1
  • Lize Xiong
    • 2
  • Erhe Gao
    • 3
  • Haichang Wang
    • 1
    Email author
  • Ling Tao
    • 1
    Email author
  1. 1.Department of Cardiology, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  2. 2.Department of Anesthesiology, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  3. 3.The Center for Translational MedicineTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations