Brag2 differentially regulates β1- and β3-integrin-dependent adhesion in endothelial cells and is involved in developmental and pathological angiogenesis

  • Yosif Manavski
  • Guillaume Carmona
  • Katrin Bennewitz
  • Zhongshu Tang
  • Fan Zhang
  • Atsuko Sakurai
  • Andreas M. Zeiher
  • J. Silvio Gutkind
  • Xuri Li
  • Jens Kroll
  • Stefanie Dimmeler
  • Emmanouil Chavakis
Original Contribution

Abstract

β1-Integrins are essential for angiogenesis. The mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. Brag2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of Brag2 in EC and angiogenesis and the underlying molecular mechanisms remain unclear. siRNA-mediated Brag2-silencing reduced EC angiogenic sprouting and migration. Brag2-siRNA transfection differentially affected α5β1- and αVβ3-integrin function: specifically, Brag2-silencing increased focal/fibrillar adhesions and adhesion on β1-integrin ligands (fibronectin and collagen), while reducing the adhesion on the αVβ3-integrin ligand, vitronectin. Consistent with these results, Brag2-silencing enhanced surface expression of α5β1-integrin, while reducing surface expression of αVβ3-integrin. Mechanistically, Brag2-mediated αVβ3-integrin-recycling and β1-integrin endocytosis and specifically of the active/matrix-bound α5β1-integrin present in fibrillar/focal adhesions (FA), suggesting that Brag2 contributes to the disassembly of FA via β1-integrin endocytosis. Arf5 and Arf6 are promoting downstream of Brag2 angiogenic sprouting, β1-integrin endocytosis and the regulation of FA. In vivo silencing of the Brag2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitreal injection of plasmids containing Brag2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveal that Brag2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating β1-integrin internalization and link for the first time the process of β1-integrin endocytosis with angiogenesis.

Keywords

Angiogenesis Brag2 Endocytosis Integrins Migration 

Supplementary material

395_2014_404_MOESM1_ESM.pdf (760 kb)
Supplementary material 1 (PDF 759 kb)
395_2014_404_MOESM2_ESM.docx (26 kb)
Supplementary material 2 (DOCX 26 kb)

References

  1. 1.
    Abraham S, Yeo M, Montero-Balaguer M, Paterson H, Dejana E, Marshall CJ, Mavria G (2009) VE-Cadherin-mediated cell–cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 19:668–674. doi:10.1016/j.cub.2009.02.057 PubMedCrossRefGoogle Scholar
  2. 2.
    Askari JA, Tynan CJ, Webb SE, Martin-Fernandez ML, Ballestrem C, Humphries MJ (2010) Focal adhesions are sites of integrin extension. J Cell Biol 188:891–903. doi:10.1083/jcb.200907174 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95:507–519. doi:10.1016/S0092-8674(00)81618-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Carlson TR, Hu H, Braren R, Kim YH, Wang RA (2008) Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 135:2193–2202. doi:10.1242/dev.016378 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257. doi:10.1038/35025220 PubMedCrossRefGoogle Scholar
  6. 6.
    Carmona G, Gottig S, Orlandi A, Scheele J, Bauerle T, Jugold M, Kiessling F, Henschler R, Zeiher AM, Dimmeler S, Chavakis E (2009) Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood 113:488–497. doi:10.1182/blood-2008-02-138438 PubMedCrossRefGoogle Scholar
  7. 7.
    Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8:1476–1485. doi:10.1111/j.1600-0854.2007.00634.x PubMedCrossRefGoogle Scholar
  8. 8.
    Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18:257–263. doi:10.1016/j.tcb.2008.03.004 PubMedCrossRefGoogle Scholar
  9. 9.
    Caswell PT, Vadrevu S, Norman JC (2009) Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10:843–853. doi:10.1038/nrm2799 PubMedCrossRefGoogle Scholar
  10. 10.
    Chao WT, Ashcroft F, Daquinag AC, Vadakkan T, Wei Z, Zhang P, Dickinson ME, Kunz J (2010) Type I phosphatidylinositol phosphate kinase beta regulates focal adhesion disassembly by promoting beta1 integrin endocytosis. Mol Cell Biol 30:4463–4479. doi:10.1128/MCB.01207-09 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chen EH, Pryce BA, Tzeng JA, Gonzalez GA, Olson EN (2003) Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114:751–762. doi:10.1016/S0092-8674(03)00720-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Clark K, Pankov R, Travis MA, Askari JA, Mould AP, Craig SE, Newham P, Yamada KM, Humphries MJ (2005) A specific alpha5beta1-integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci 118:291–300. doi:10.1242/jcs.01623 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A, Willett KL, Smith LE (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4:1565–1573. doi:10.1038/nprot.2009.187 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358. doi:10.1038/nrm1910 PubMedCrossRefGoogle Scholar
  15. 15.
    Dunphy JL, Moravec R, Ly K, Lasell TK, Melancon P, Casanova JE (2006) The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins. Curr Biol 16:315–320. doi:10.1016/j.cub.2005.12.032 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Epting D, Wendik B, Bennewitz K, Dietz CT, Driever W, Kroll J (2010) The Rac1 regulator ELMO1 controls vascular morphogenesis in zebrafish. Circ Res 107:45–55. doi:10.1161/CIRCRESAHA.109.213983 PubMedCrossRefGoogle Scholar
  17. 17.
    Ezratty EJ, Bertaux C, Marcantonio EE, Gundersen GG (2009) Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187:733–747. doi:10.1083/jcb.200904054 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gambardella L, Hemberger M, Hughes B, Zudaire E, Andrews S, Vermeren S (2010) PI3K signaling through the dual GTPase-activating protein ARAP3 is essential for developmental angiogenesis. Sci Signal 3:ra76 doi:10.1126/scisignal.2001026
  19. 19.
    Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608. doi:10.1038/nrm2755 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hashimoto A, Hashimoto S, Ando R, Noda K, Ogawa E, Kotani H, Hirose M, Menju T, Morishige M, Manabe T, Toda Y, Ishida S, Sabe H (2011) GEP100-Arf6-AMAP1-cortactin pathway frequently used in cancer invasion is activated by VEGFR2 to promote angiogenesis. PLoS ONE 6:e23359. doi:10.1371/journal.pone.0023359 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hiroi T, Someya A, Thompson W, Moss J, Vaughan M (2006) GEP100/BRAG2: activator of ADP-ribosylation factor 6 for regulation of cell adhesion and actin cytoskeleton via E-cadherin and alpha-catenin. Proc Natl Acad Sci USA 103:10672–10677. doi:10.1073/pnas.0604091103 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532. doi:10.1016/S0092-8674(00)81540-8 PubMedCrossRefGoogle Scholar
  23. 23.
    Hynes RO (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(Suppl 1):32–40. doi:10.1111/j.1538-7836.2007.02569.x PubMedCrossRefGoogle Scholar
  24. 24.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687. doi:10.1016/S0092-8674(02)00971-6 PubMedCrossRefGoogle Scholar
  25. 25.
    Ikeda S, Ushio-Fukai M, Zuo L, Tojo T, Dikalov S, Patrushev NA, Alexander RW (2005) Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 96:467–475. doi:10.1161/01.RES.0000158286.51045.16 PubMedCrossRefGoogle Scholar
  26. 26.
    Jian X, Gruschus JM, Sztul E, Randazzo PA (2012) The pleckstrin homology (PH) domain of the Arf exchange factor Brag2 is an allosteric binding site. J Biol Chem 287:24273–24283. doi:10.1074/jbc.M112.368084 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG, Hayallah AM, Thomas KR, Famulok M, Zhang K, Ginsberg MH, Li DY (2009) Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 11:1325–1331. doi:10.1038/ncb1976 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kanzler I, Tuchscheerer N, Steffens G, Simsekyilmaz S, Konschalla S, Kroh A, Simons D, Asare Y, Schober A, Bucala R, Weber C, Bernhagen J, Liehn EA (2013) Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Res Cardiol 108:310. doi:10.1007/s00395-012-0310-4 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V (2003) ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 162:113–124. doi:10.1083/jcb.200301006 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318. doi:10.1006/dbio2002.0711 PubMedCrossRefGoogle Scholar
  31. 31.
    Li L, Welser-Alves J, van der Flier A, Boroujerdi A, Hynes RO, Milner R (2012) An angiogenic role for the alpha5beta1 integrin in promoting endothelial cell proliferation during cerebral hypoxia. Exp Neurol 237:46–54. doi:10.1016/j.expneurol.2012.06.005 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lorenzen JM, Dietrich B, Fiedler J, Jazbutyte V, Fleissner F, Karpinski N, Weidemann F, Wanner C, Asan E, Caprio M, Ertl G, Bauersachs J, Thum T (2013) Pathologic endothelial response and impaired function of circulating angiogenic cells in patients with Fabry disease. Basic Res Cardiol 108:311. doi:10.1007/s00395-012-0311-3 PubMedCrossRefGoogle Scholar
  33. 33.
    Moravec R, Conger KK, D’Souza R, Allison AB, Casanova JE (2012) BRAG2/GEP100/IQSec1 interacts with clathrin and regulates alpha5beta1 integrin endocytosis through activation of ADP ribosylation factor 5 (Arf5). J Biol Chem 287:31138–31147. doi:10.1074/jbc.M112.383117 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M, Wei S, Hashimoto A, Yamada A, Yano H, Mazaki Y, Kodama H, Nio Y, Manabe T, Wada H, Kobayashi H, Sabe H (2008) GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nat Cell Biol 10:85–92. doi:10.1038/ncb1672 PubMedCrossRefGoogle Scholar
  35. 35.
    Myers KR, Casanova JE (2008) Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 18:184–192. doi:10.1016/j.tcb.2008.02.002 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Nishimura T, Kaibuchi K (2007) Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev Cell 13:15–28. doi:10.1016/j.devcel.2007.05.003 PubMedCrossRefGoogle Scholar
  37. 37.
    Pajcini KV, Pomerantz JH, Alkan O, Doyonnas R, Blau HM (2008) Myoblasts and macrophages share molecular components that contribute to cell–cell fusion. J Cell Biol 180:1005–1019. doi:10.1083/jcb.200707191 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540. doi:10.1038/385537a0 PubMedCrossRefGoogle Scholar
  39. 39.
    Poupart ME, Fessart D, Cotton M, Laporte SA, Claing A (2007) ARF6 regulates angiotensin II type 1 receptor endocytosis by controlling the recruitment of AP-2 and clathrin. Cell Signal 19:2370–2378. doi:10.1016/j.cellsig.2007.07.015 PubMedCrossRefGoogle Scholar
  40. 40.
    Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, Hsu VW (2004) Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic 5:20–36 [pii]: 150PubMedCrossRefGoogle Scholar
  41. 41.
    Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34. doi:10.1038/nm0102-27 PubMedCrossRefGoogle Scholar
  42. 42.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709. doi:10.1126/science.1092053 PubMedCrossRefGoogle Scholar
  43. 43.
    Roberts M, Barry S, Woods A, van der Sluijs P, Norman J (2001) PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr Biol 11:1392–1402 [pii]: S0960-9822(01)00442-0PubMedCrossRefGoogle Scholar
  44. 44.
    Sakurai A, Gavard J, Annas-Linhares Y, Basile JR, Amornphimoltham P, Palmby TR, Yagi H, Zhang F, Randazzo PA, Li X, Weigert R, Gutkind JS (2010) Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by regulating Arf6 and R-Ras. Mol Cell Biol 30:3086–3098. doi:10.1128/MCB.01652-09 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Sakurai A, Jian X, Lee CJ, Manavski Y, Chavakis E, Donaldson J, Randazzo PA, Gutkind JS (2011) Phosphatidylinositol-4-phosphate 5-kinase and GEP100/Brag2 protein mediate antiangiogenic signaling by semaphorin 3E-plexin-D1 through Arf6 protein. J Biol Chem 286:34335–34345. doi:10.1074/jbc.M111.259499 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Scholz R, Berberich S, Rathgeber L, Kolleker A, Kohr G, Kornau HC (2010) AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron 66:768–780. doi:10.1016/j.neuron.2010.05.003 PubMedCrossRefGoogle Scholar
  47. 47.
    Someya A, Moss J, Nagaoka I (2010) The guanine nucleotide exchange protein for ADP-ribosylation factor 6, ARF-GEP100/BRAG2, regulates phagocytosis of monocytic phagocytes in an ARF6-dependent process. J Biol Chem 285:30698–30707. doi:10.1074/jbc.M110.107458 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Someya A, Sata M, Takeda K, Pacheco-Rodriguez G, Ferrans VJ, Moss J, Vaughan M (2001) ARF-GEP(100), a guanine nucleotide-exchange protein for ADP-ribosylation factor 6. Proc Natl Acad Sci USA 98:2413–2418. doi:10.1073/pnas.05163479898/5/2413 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Stenzel D, Franco CA, Estrach S, Mettouchi A, Sauvaget D, Rosewell I, Schertel A, Armer H, Domogatskaya A, Rodin S, Tryggvason K, Collinson L, Sorokin L, Gerhardt H (2011) Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep 12:1135–1143. doi:10.1038/embor.2011.194 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Stenzel D, Lundkvist A, Sauvaget D, Busse M, Graupera M, van der Flier A, Wijelath ES, Murray J, Sobel M, Costell M, Takahashi S, Fassler R, Yamaguchi Y, Gutmann DH, Hynes RO, Gerhardt H (2011) Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis. Development 138:4451–4463. doi:10.1242/dev.071381 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Stoll SJ, Bartsch S, Augustin HG, Kroll J (2011) The transcription factor HOXC9 regulates endothelial cell quiescence and vascular morphogenesis in zebrafish via inhibition of interleukin 8. Circ Res 108:1367–1377. doi:10.1161/CIRCRESAHA.111.244095 PubMedCrossRefGoogle Scholar
  52. 52.
    Tanjore H, Zeisberg EM, Gerami-Naini B, Kalluri R (2008) Beta1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Dev Dyn 237:75–82. doi:10.1002/dvdy.21385 PubMedCrossRefGoogle Scholar
  53. 53.
    Valdembri D, Caswell PT, Anderson KI, Schwarz JP, Konig I, Astanina E, Caccavari F, Norman JC, Humphries MJ, Bussolino F, Serini G (2009) Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 7:e25. doi:10.1371/journal.pbio.1000025 PubMedCrossRefGoogle Scholar
  54. 54.
    White DP, Caswell PT, Norman JC (2007) alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525. doi:10.1083/jcb.200609004 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716. doi:10.1038/nm1427 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yosif Manavski
    • 2
  • Guillaume Carmona
    • 2
    • 7
  • Katrin Bennewitz
    • 3
  • Zhongshu Tang
    • 4
  • Fan Zhang
    • 5
  • Atsuko Sakurai
    • 6
  • Andreas M. Zeiher
    • 1
  • J. Silvio Gutkind
    • 6
  • Xuri Li
    • 4
  • Jens Kroll
    • 3
    • 8
  • Stefanie Dimmeler
    • 2
  • Emmanouil Chavakis
    • 1
    • 2
  1. 1.Department of Internal Medicine III, CardiologyGoethe University of FrankfurtFrankfurtGermany
  2. 2.Institute of Cardiovascular Regeneration, Goethe University FrankfurtFrankfurtGermany
  3. 3.Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  4. 4.State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  5. 5.NEI, National Institutes of HealthBethesdaUSA
  6. 6.Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaUSA
  7. 7.David H Koch Institute for Integrative Cancer Research at Massachusetts Institute of TechnologyCambridgeUSA
  8. 8.Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ-ZMBH Alliance)HeidelbergGermany

Personalised recommendations