Impact of Hey2 and COUP-TFII on genes involved in arteriovenous differentiation in primary human arterial and venous endothelial cells

  • Slobodanka Korten
  • Coy Brunssen
  • David M. Poitz
  • Sylvia Großklaus
  • Melanie Brux
  • Hans-Joachim Schnittler
  • Ruth H. Strasser
  • Stefan R. Bornstein
  • Henning MorawietzEmail author
  • Winfried GoettschEmail author
Original Contribution


Arteries and veins show marked differences in their anatomy, physiology and genetic expression pattern. In this study, we analyzed impact of overexpression or downregulation of arterial marker gene Hey2 and venous marker gene COUP-TFII in human venous and arterial endothelial cells on genes involved in arteriovenous differentiation. Lentiviral overexpression of venous marker gene COUP-TFII in arterial endothelial cells led to downregulation of NICD4, arterial marker gene Hey2 and EphrinB2. Downregulation of Hey2 could be mediated by direct binding of COUP-TFII to Hey2 promoter as shown by ChIP, EMSA and promoter analysis. Downregulation of Hey2 by shRNA causes downregulation of EphrinB2 expression. Overexpression of arterial marker Hey2 in venous endothelial cells did not change expression pattern of COUP-TFII. Downregulation of venous marker gene COUP-TFII in venous endothelial cells resulted in upregulation of VEGF-A, Dll4 and EphrinB2 expression. Our data support an important role of Hey2 and COUP-TFII in arteriovenous differentiation of human endothelial cells.


Arteriovenous differentiation COUP-TFII Endothelial cells Hey2 Vascular biology 



We thank A. Frenzel, and A. Mieting for excellent technical assistance. This work was supported by grants from Medical Faculty of University of Technology Dresden (MeDDrive program to W.G.), Doktor Robert Pfleger Foundation, Bamberg, Germany (to W.G.), Deutsche Forschungsgemeinschaft (DFG, 1695/4-1, 1695/5-1 to H.M.), Else Kröner-Fresenius-Stiftung (to H.M.) and DFG Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence (to W.G. and H.M.).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

395_2013_362_MOESM1_ESM.pdf (3.1 mb)
Supplementary material 1 (PDF 3173 kb)


  1. 1.
    Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100:10623–10628. doi: 10.1073/pnas.1434429100 PubMedCrossRefGoogle Scholar
  2. 2.
    Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci USA 103:6554–6559. doi: 10.1073/pnas.0506886103 PubMedCrossRefGoogle Scholar
  3. 3.
    Deng DX, Tsalenko A, Vailaya A, Ben-Dor A, Kundu R, Estay I, Tabibiazar R, Kincaid R, Yakhini Z, Bruhn L, Quertermous T (2006) Differences in vascular bed disease susceptibility reflect differences in gene expression response to atherogenic stimuli. Circ Res 98:200–208. doi: 10.1161/01.RES.0000200738.50997.f2 PubMedCrossRefGoogle Scholar
  4. 4.
    Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N (2009) Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 16:58–69. doi: 10.1016/j.devcel.2008.11.008 PubMedCrossRefGoogle Scholar
  5. 5.
    Donovan J, Kordylewska A, Jan YN, Utset MF (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12:1605–1610 (pii:S0960982202011491)PubMedCrossRefGoogle Scholar
  6. 6.
    Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911. doi: 10.1101/gad.29100418/8/901 PubMedCrossRefGoogle Scholar
  7. 7.
    Gessler M, Knobeloch KP, Helisch A, Amann K, Schumacher N, Rohde E, Fischer A, Leimeister C (2002) Mouse gridlock: no aortic coarctation or deficiency, but fatal cardiac defects in Hey2 −/− mice. Curr Biol 12:1601–1604. doi: S0960982202011508 PubMedCrossRefGoogle Scholar
  8. 8.
    Goettsch C, Goettsch W, Brux M, Haschke C, Brunssen C, Muller G, Bornstein SR, Duerrschmidt N, Wagner AH, Morawietz H (2011) Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol 106:551–561. doi: 10.1007/s00395-011-0170-3 PubMedCrossRefGoogle Scholar
  9. 9.
    Goettsch C, Goettsch W, Muller G, Seebach J, Schnittler HJ, Morawietz H (2009) Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun 380:355–360. doi: 10.1016/j.bbrc.2009.01.107 PubMedCrossRefGoogle Scholar
  10. 10.
    Goettsch W, Gryczka C, Korff T, Ernst E, Goettsch C, Seebach J, Schnittler HJ, Augustin HG, Morawietz H (2008) Flow-dependent regulation of angiopoietin-2. J Cell Physiol 214:491–503. doi: 10.1002/jcp.21229 PubMedCrossRefGoogle Scholar
  11. 11.
    Guha S, Cullen JP, Morrow D, Colombo A, Lally C, Walls D, Redmond EM, Cahill PA (2011) Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival. Basic Res Cardiol 106:773–785. doi: 10.1007/s00395-011-0189-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Ho M, Yang E, Matcuk G, Deng D, Sampas N, Tsalenko A, Tabibiazar R, Zhang Y, Chen M, Talbi S, Ho YD, Wang J, Tsao PS, Ben-Dor A, Yakhini Z, Bruhn L, Quertermous T (2003) Identification of endothelial cell genes by combined database mining and microarray analysis. Physiol Genomics 13:249–262. doi: 10.1152/physiolgenomics.00186.2002 PubMedGoogle Scholar
  13. 13.
    Iso T, Hamamori Y, Kedes L (2003) Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 23:543–553. doi: 10.1161/01.ATV.0000060892.81529.8F PubMedCrossRefGoogle Scholar
  14. 14.
    Kang J, Yoo J, Lee S, Tang W, Aguilar B, Ramu S, Choi I, Otu HH, Shin JW, Dotto GP, Koh CJ, Detmar M, Hong YK (2010) An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116:140–150. doi: 10.1182/blood-2009-11-252270 PubMedCrossRefGoogle Scholar
  15. 15.
    Korff T, Dandekar G, Pfaff D, Fuller T, Goettsch W, Morawietz H, Schaffner F, Augustin HG (2006) Endothelial ephrinB2 is controlled by microenvironmental determinants and associates context-dependently with CD31. Arterioscler Thromb Vasc Biol 26:468–474. doi: 10.1161/01.ATV.0000200081.42064.e7 PubMedCrossRefGoogle Scholar
  16. 16.
    Kroller-Schon S, Schulz E, Wenzel P, Kleschyov AL, Hortmann M, Torzewski M, Oelze M, Renne T, Daiber A, Munzel T (2011) Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress. Basic Res Cardiol 106:1147–1158. doi: 10.1007/s00395-011-0227-3 PubMedCrossRefGoogle Scholar
  17. 17.
    Kronstein R, Seebach J, Grossklaus S, Minten C, Engelhardt B, Drab M, Liebner S, Arsenijevic Y, Taha AA, Afanasieva T, Schnittler HJ (2011) Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc Res 93:130–140. doi: 10.1093/cvr/cvr256 PubMedCrossRefGoogle Scholar
  18. 18.
    Kume T (2010) Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol 25:637–646PubMedGoogle Scholar
  19. 19.
    Lanner F, Sohl M, Farnebo F (2007) Functional arterial and venous fate is determined by graded VEGF signaling and notch status during embryonic stem cell differentiation. Arterioscler Thromb Vasc Biol 27:487–493. doi: 10.1161/01.ATV.0000255990.91805.6d PubMedCrossRefGoogle Scholar
  20. 20.
    Lehle K, Straub RH, Morawietz H, Kunz-Schughart LA (2010) Relevance of disease- and organ-specific endothelial cells for in vitro research. Cell Biol Int 34:1231–1238. doi: 10.1042/CBI20100531 PubMedCrossRefGoogle Scholar
  21. 21.
    Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J (2009) Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF–Notch signaling pathways. Arterioscler Thromb Vasc Biol 29:2125–2131. doi: 10.1161/ATVBAHA.109.193185 PubMedCrossRefGoogle Scholar
  22. 22.
    Morawietz H (2011) Endothelial NADPH oxidases: friends or foes? Basic Res Cardiol 106:521–525. doi: 10.1007/s00395-011-0188-6 PubMedCrossRefGoogle Scholar
  23. 23.
    Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106:527–538. doi: 10.1007/s00395-011-0179-7 PubMedCrossRefGoogle Scholar
  24. 24.
    Park Y, Yang J, Zhang H, Chen X, Zhang C (2011) Effect of PAR2 in regulating TNF-alpha and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111–123. doi: 10.1007/s00395-010-0129-9 PubMedCrossRefGoogle Scholar
  25. 25.
    Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13:1037–1049PubMedCrossRefGoogle Scholar
  26. 26.
    Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524. doi: 10.1101/gad.1589207 PubMedCrossRefGoogle Scholar
  27. 27.
    Sakata Y, Kamei CN, Nakagami H, Bronson R, Liao JK, Chin MT (2002) Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proc Natl Acad Sci USA 99:16197–16202. doi: 10.1073/pnas.252648999 PubMedCrossRefGoogle Scholar
  28. 28.
    Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi: 10.1007/s00395-011-0190-z PubMedCrossRefGoogle Scholar
  29. 29.
    Sorensen I, Adams RH, Gossler A (2009) DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113:5680–5688. doi: 10.1182/blood-2008-08-174508 PubMedCrossRefGoogle Scholar
  30. 30.
    Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588. doi: 10.1161/CIRCRESAHA.108.188805 PubMedCrossRefGoogle Scholar
  31. 31.
    Tiyerili V, Zimmer S, Jung S, Wassmann K, Naehle CP, Lutjohann D, Zimmer A, Nickenig G, Wassmann S (2010) CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res Cardiol 105:465–477. doi: 10.1007/s00395-010-0090-7 PubMedCrossRefGoogle Scholar
  32. 32.
    You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104. doi: 10.1038/nature03511 PubMedCrossRefGoogle Scholar
  33. 33.
    Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC (2000) gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824. doi: 8344 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Slobodanka Korten
    • 1
    • 2
  • Coy Brunssen
    • 1
  • David M. Poitz
    • 3
  • Sylvia Großklaus
    • 4
  • Melanie Brux
    • 1
  • Hans-Joachim Schnittler
    • 2
    • 4
    • 5
  • Ruth H. Strasser
    • 2
    • 3
  • Stefan R. Bornstein
    • 2
    • 6
  • Henning Morawietz
    • 1
    • 2
    Email author
  • Winfried Goettsch
    • 1
    • 2
    Email author
  1. 1.Division of Vascular Endothelium and Microcirculation, Department of Medicine IIIUniversity Hospital Carl Gustav Carus, University of Technology DresdenDresdenGermany
  2. 2.Center for Regenerative Therapies Dresden, DFG Research Center, Cluster of ExcellenceDresdenGermany
  3. 3.Department of Internal Medicine and CardiologyDresden Heart CenterDresdenGermany
  4. 4.Department of PhysiologyUniversity of Technology DresdenDresdenGermany
  5. 5.Department of Anatomy and Cell Biology, Institute of AnatomyUniversity of MünsterMünsterGermany
  6. 6.Department of Medicine IIIUniversity Hospital Carl Gustav Carus, University of Technology DresdenDresdenGermany

Personalised recommendations