Novel aspects of excitation–contraction coupling in heart failure

  • Stefan Neef
  • Lars S. MaierEmail author
Invited Review
Part of the following topical collections:
  1. Novel Perspectives on Heart Failure


Excitation–contraction coupling is the process by which electrical activation is translated into contraction of a cardiac myocyte and thus the heart. In heart failure, expression, phosphorylation, and function of several intracellular proteins that are involved in excitation–contraction coupling are altered. The present review article summarizes central principles and highlights novel aspects of alterations in heart failure, focusing especially on recent findings regarding altered sarcoplasmic reticulum Ca2+-leak and late Na+-current without being able to cover all changes in full detail. These two pathomechanisms seem to play interesting roles with respect to systolic and diastolic dysfunction and may also be important for cardiac arrhythmias. Furthermore, the article outlines the translation of these novel findings into potential therapeutic approaches.


Calcium Calcium/calmodulin-dependent protein kinase II (CaMKII) Late sodium current (late INaProtein kinase A (PKA) Sarcoplasmic reticulum (SR) Sodium SR calcium leak 



Dr. Maier is funded by Deutsche Forschungsgemeinschaft (DFG) grant MA 1982/4-2, TPA03 SFB 1002, GRK 1816 RP3, the DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), and the Fondation Leducq ‘Alliance for CaMKII Signaling in Heart’ as well as ‘Redox and Nitrosative Regulation of Cardiac Remodeling’.

Conflict of interest

Dr. Maier acknowledges research grants and funding from CVT, GILEAD, and MENARINI/Berlin-Chemie as well as speaker honoraria from Berlin-Chemie.


  1. 1.
    Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322. doi: 10.1161/01.RES.0000194329.41863.89 PubMedCrossRefGoogle Scholar
  2. 2.
    Aker S, Snabaitis AK, Konietzka I, Van De Sand A, Böngler K, Avkiran M, Heusch G, Schulz R (2004) Inhibition of the Na+/H+ exchanger attenuates the deterioration of ventricular function during pacing-induced heart failure in rabbits. Cardiovasc Res 63:273–282. doi: 10.1016/j.cardiores.2004.04.014 PubMedCrossRefGoogle Scholar
  3. 3.
    Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, Marks AR, Olson EN (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ Res 89:997–1004. doi: 10.1161/hh2301.100003 PubMedCrossRefGoogle Scholar
  4. 4.
    Ashpole NM, Herren AW, Ginsburg KS, Brogan JD, Johnson DE, Cummins TR, Bers DM, Hudmon A (2012) Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites. J Biol Chem 287:19856–19869. doi: 10.1074/jbc.M111.322537 PubMedCrossRefGoogle Scholar
  5. 5.
    Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Fiolet JW (2003) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024. doi: 10.1016/S0008-6363(02)00809-X PubMedCrossRefGoogle Scholar
  6. 6.
    Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106:2342–2347. doi: 10.1073/pnas.0813013106 PubMedCrossRefGoogle Scholar
  7. 7.
    Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Györke S (2011) The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90:493–502. doi: 10.1093/cvr/cvr025 PubMedCrossRefGoogle Scholar
  8. 8.
    Benkusky NA, Weber CS, Scherman JA, Farrell EF, Hacker TA, John MC, Powers PA, Valdivia HH (2007) Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res 101:819–829. doi: 10.1161/CIRCRESAHA.107.153007 PubMedCrossRefGoogle Scholar
  9. 9.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. doi: 10.1038/415198a PubMedCrossRefGoogle Scholar
  10. 10.
    Bers DM (2012) Ryanodine receptor S2808 phosphorylation in heart failure: smoking gun or red herring. Circ Res 110:796–799. doi: 10.1161/CIRCRESAHA.112.265579 PubMedCrossRefGoogle Scholar
  11. 11.
    Böhm M, Reiger B, Schwinger RH, Erdmann E (1994) cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in non-failing and failing myocardium. Cardiovasc Res 28:1713–1719. doi: 10.1093/cvr/28.11.1713 PubMedCrossRefGoogle Scholar
  12. 12.
    Bölck B, Münch G, Mackenstein P, Hellmich M, Hirsch I, Reuter H, Hattebuhr N, Weig HJ, Ungerer M, Brixius K, Schwinger RH (2004) Na+/Ca2+ exchanger overexpression impairs frequency- and ouabain-dependent cell shortening in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 287:H1435–H1445. doi: 10.1152/ajpheart.00397.2003 PubMedCrossRefGoogle Scholar
  13. 13.
    Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasová E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR (1994) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523. doi: 10.1016/0092-8674(94)90214-3 PubMedCrossRefGoogle Scholar
  14. 14.
    Bristow MR, Ginsburg R, Minobe W, Cubiciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DE, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts. N Engl J Med 307:205–211PubMedCrossRefGoogle Scholar
  15. 15.
    Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci USA 102:3099–3104. doi: 10.1073/pnas.0500059102 PubMedCrossRefGoogle Scholar
  16. 16.
    Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, Schotten U, Anderson ME, Valderrábano M, Dobrev D, Wehrens XH (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951. doi: 10.1172/JCI37059 PubMedGoogle Scholar
  17. 17.
    Chen Y, Escoubet B, Prunier F, Amour J, Simonides WS, Vivien B, Lenoir C, Heimburger M, Choqueux C, Gellen B, Riou B, Michel JB, Franz WM, Mercadier JJ (2004) Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmias. Circulation 109:1898–1903. doi: 10.1161/01.CIR.0000124230.60028.42 PubMedCrossRefGoogle Scholar
  18. 18.
    Cheng H, Lederer MR, Lederer WJ, Cannell MB (1996) Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol 270:C148–C159PubMedGoogle Scholar
  19. 19.
    Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, Sartiani L, Tosi B, Suffredini S, Tesi C, Yacoub M, Olivotto I, Belardinelli L, Poggesi C, Cerbai E, Mugelli A (2013) Late sodium current inhibition reverses electro-mechanical dysfunction in human hypertrophic cardiomyopathy. Circulation 127:575–584. doi: 10.1161/CIRCULATIONAHA.112.134932 PubMedCrossRefGoogle Scholar
  20. 20.
    Curran J, Hinton MJ, Rios E, Bers DM, Shannon TR (2007) Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100:391–398. doi: 10.1161/01.RES.0000258172.74570.e6 PubMedCrossRefGoogle Scholar
  21. 21.
    Cutler MJ, Wan X, Plummer BN, Liu H, Deschenes I, Laurita KR, Hajjar RJ, Rosenbaum DS (2012) Targeted sarcoplasmic reticulum Ca2+ ATPase 2a gene delivery to restore electrical stability in the failing heart. Circulation 126:2095–2104. doi: 10.1161/CIRCULATIONAHA.111.071480 PubMedCrossRefGoogle Scholar
  22. 22.
    Czuriga D, Tóth A, Pásztor ET, Balogh A, Bodnár A, Nizsalóczki E, Lionetti V, Recchia FA, Czuriga I, Edes I, Papp Z (2012) Cell-to-cell variability in troponin I phosphorylation in a porcine model of pacing-induced heart failure. Basic Res Cardiol 107:244. doi: 10.1007/s00395-012-0244-x PubMedCrossRefGoogle Scholar
  23. 23.
    De Keulenaer GW, Brutsaert DL (2011) Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum. Circulation 123:1996–2004. doi: 10.1161/CIRCULATIONAHA.110.981431 PubMedCrossRefGoogle Scholar
  24. 24.
    del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW, Gwathmey JK, Rosenzweig A, Hajjar RJ (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100:2308–2311. doi: 10.1161/01.CIR.100.23.2308 CrossRefGoogle Scholar
  25. 25.
    DeSantiago J, Maier LS, Bers DM (2004) Phospholamban is required for CaMKII-dependent recovery of Ca transients and SR Ca reuptake during acidosis in cardiac myocytes. J Mol Cell Cardiol 36:67–74. doi: 10.1016/j.yjmcc.2003.10.012 PubMedCrossRefGoogle Scholar
  26. 26.
    Despa S, Islam MA, Weber CR, Pogwizd SM, Bers DM (2002) Intracellular Na concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105:2543–2548. doi: 10.1161/01.CIR.0000016701.85760.97 PubMedCrossRefGoogle Scholar
  27. 27.
    Dunlay SM, Weston SA, Jacobsen SJ, Roger VL (2009) Risk factors for heart failure: a population-based case-control study. Am J Med 122:1023–1028. doi: 10.1016/j.amjmed.2009.04.022 PubMedCrossRefGoogle Scholar
  28. 28.
    Dybkova N, Sedej S, Napolitano C, Neef S, Rokita AG, Hünlich M, Heller Brown J, Kockskämper J, Priori SG, Pieske B, Maier LS (2011) Overexpression of CaMKIIδc in RyR2R4496C knock-in mice leads to altered intracellular Ca2+ handling and increased mortality. J Am Coll Cardiol 57:469–479. doi: 10.1016/j.jacc.2010.08.639 PubMedCrossRefGoogle Scholar
  29. 29.
    Eisner DA, Kashimura T, Venetucci LA, Trafford AW (2009) From the ryanodine receptor to cardiac arrhythmias. Circ J 73:1561–1567. doi: 10.1253/circj.CJ-09-0478 PubMedCrossRefGoogle Scholar
  30. 30.
    Eisner D, Bode E, Venetucci L, Trafford A (2012) Calcium flux balance in the heart. J Mol Cell Cardiol. doi: 10.1016/j.yjmcc.2012.11.017 (Epub ahead of print)Google Scholar
  31. 31.
    Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474. doi: 10.1016/j.cell.2008.02.048 PubMedCrossRefGoogle Scholar
  32. 32.
    Fang J, Mensah GA, Croft JB, Keenan NL (2008) Heart failure-related hospitalization in the U.S., 1979 to 2004. J Am Coll Cardiol 52:428–434. doi: 10.1016/j.jacc.2008.03.061 PubMedCrossRefGoogle Scholar
  33. 33.
    Fischer TH, Herting J, Renner A, Tirilomis T, Neef S, Gummert J, Schöndube FA, Hasenfuss G, Maier LS, Sossalla S (2012) The contribution of CaMKII and PKA to the development of an increased RyR-dependent SR Ca leak in human cardiac pathology. Circulation 126:A9785 (abstract)Google Scholar
  34. 34.
    Florea S, Anjak A, Cai WF, Qian J, Vafiadaki E, Figueria S, Haghighi K, Rubinstein J, Lorenz J, Kranias EG (2012) Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging. Basic Res Cardiol 107:279. doi: 10.1007/s00395-012-0279-z PubMedCrossRefGoogle Scholar
  35. 35.
    Guo T, Zhang T, Mestril R, Bers DM (2006) Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res 99:398–406. doi: 10.1161/01.RES.0000236756.06252.13 PubMedCrossRefGoogle Scholar
  36. 36.
    Gyorke I, Hester N, Jones LR, Gyorke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128. doi: 10.1016/S0006-3495(04)74271-X PubMedCrossRefGoogle Scholar
  37. 37.
    Hamdani N, Krysiak J, Kreusser MM, Neef S, Remedios CG, Maier LS, Krüger M, Backs J, Linke WA (2013) Crucial role for Ca2+/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Cir Res 112(4):664–674. doi: 10.1161/CIRCRESAHA.111.300105 CrossRefGoogle Scholar
  38. 38.
    Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Moll Cell Cardiol 34:951–969. doi: 10.1006/jmcc.2002.2037 CrossRefGoogle Scholar
  39. 39.
    Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H (1994) Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15:164–170PubMedCrossRefGoogle Scholar
  40. 40.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442. doi: 10.1161/01.RES.75.3.434 PubMedCrossRefGoogle Scholar
  41. 41.
    Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, Prestle J, Minami K, Just H (1999) Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 99:641–648. doi: 10.1161/01.CIR.99.5.641 PubMedCrossRefGoogle Scholar
  42. 42.
    He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, Anderson ME (2011) Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17:1610–1618. doi: 10.1038/nm.2506 PubMedCrossRefGoogle Scholar
  43. 43.
    Heinzel FR, Bito V, Volders PG, Antoons G, Mubagwa K, Sipido KR (2002) Spatial and temporal inhomogeneities during Ca2+ release from the sarcoplasmic reticulum in pig ventricular myocytes. Circ Res 91:1023–1030. doi: 10.1161/01.RES.0000045940.67060.DD PubMedCrossRefGoogle Scholar
  44. 44.
    Hersel J, Jung S, Mohacsi P, Hullin R (2002) Expression of the L-type calcium channel in human heart failure. Basic Res Cardiol 97(Suppl 1):I4–I10. doi: 10.1007/s003950200022 PubMedGoogle Scholar
  45. 45.
    Heusch G (2009) Diastolic heart failure: a misNOmer. Basic Res Cardiol 104:465–467. doi: 10.1007/s00395-009-0025-3 PubMedCrossRefGoogle Scholar
  46. 46.
    Heusch G (2011) Heart rate and heart failure. Not a simple relationship. Circ J 75:229–236. doi: 10.1253/circj.CJ-10-0925 PubMedCrossRefGoogle Scholar
  47. 47.
    Heusch G, Schulz R (2011) A radical view on the contractile machinery in human heart failure. J Am Coll Cardiol 57:310–312. doi: 10.1016/j.jacc.2010.06.057 PubMedCrossRefGoogle Scholar
  48. 48.
    Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P (1999) Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 84:713–721. doi: 10.1161/01.RES.84.6.713 PubMedCrossRefGoogle Scholar
  49. 49.
    Huke S, Bers DM (2008) Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochem Biophys Res Commun 376:80–85. doi: 10.1016/j.bbrc.2008.08.084 PubMedCrossRefGoogle Scholar
  50. 50.
    Hund TJ, Koval OM, Li J, Wright PJ, Qian L, Snyder JS, Gudmundsson H, Kline CF, Davidson NP, Cardona N, Rasband MN, Anderson ME, Mohler PJ (2010) A betaIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest 120:3508–3519. doi: 10.1172/JCI43621 PubMedCrossRefGoogle Scholar
  51. 51.
    Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ (2011) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID) investigators. Circulation 124:304–313. doi: 10.1161/CIRCULATIONAHA.111.022889 PubMedCrossRefGoogle Scholar
  52. 52.
    Jiang MT, Lokuta AJ, Farrell EF, Wolff MR, Haworth RA, Valdivia HH (2002) Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circ Res 91:1015–1022. doi: 10.1161/01.RES.0000043663.08689.05 PubMedCrossRefGoogle Scholar
  53. 53.
    Keizer J, Smith GD, Ponce-Dawson S, Pearson JE (1998) Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys J 75:595–600PubMedCrossRefGoogle Scholar
  54. 54.
    Knöll R, Kostin S, Klede S, Savvatis K, Klinge L, Stehle I, Gunkel S, Kötter S, Babicz K, Sohns M, Miocic S, Didié M, Knöll G, Zimmermann WH, Thelen P, Bickeböller H, Maier LS, Schaper W, Schaper J, Kraft T, Tschöpe C, Linke WA, Chien KR (2010) A common MLP (Muscle LIM Protein) variant is associated with cardiomyopathy. Circ Res 106:695–704. doi: 10.1161/CIRCRESAHA.109.206243 PubMedCrossRefGoogle Scholar
  55. 55.
    Kögler H, Schott P, Toischer K, Milting H, Van Nguyen P, Kohlhaas M, Grebe C, Kassner A, Domeier E, Teucher N, Seidler T, Knöll R, Maier LS, El-Banayosy A, Körfer R, Hasenfuss G (2006) Relevance of brain natriuretic peptide in preload-dependent regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase expression. Circulation 113:2724–2732. doi: 10.1161/CIRCULATIONAHA.105.608828 PubMedCrossRefGoogle Scholar
  56. 56.
    Kohlhaas M, Zhang T, Seidler T, Zibrova D, Dybkova N, Steen A, Wagner S, Chen L, Brown JH, Bers DM, Maier LS (2006) Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res 98:235–244. doi: 10.1161/01.RES.0000200739.90811.9f PubMedCrossRefGoogle Scholar
  57. 57.
    Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118:2230–2245. doi: 10.1172/JCI35346 PubMedGoogle Scholar
  58. 58.
    Leineweber K, Aker S, Beilfuss A, Rekasi H, Konietzka I, Martin C, Heusch G, Schulz R (2006) Inhibition of Na+/H+-exchanger with sabiporide attenuates the downregulation and uncoupling of the myocardial beta-adrenoceptor system in failing rabbit hearts. Br J Pharmacol 148:137–146. doi: 10.1038/sj.bjp.0706714 PubMedCrossRefGoogle Scholar
  59. 59.
    Leineweber K, Böhm M, Heusch G (2006) Cyclic adenosine monophosphate in acute myocardial infarction with heart failure: slayer or savior? Circulation 114:365–367. doi: 10.1161/CIRCULATIONAHA.106.642132 PubMedCrossRefGoogle Scholar
  60. 60.
    Lewinski D, Stumme B, Maier LS, Luers C, Bers DM, Pieske B (2003) Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovasc Res 57:1052–1061. doi: 10.1016/S0008-6363(02)00830-1 CrossRefGoogle Scholar
  61. 61.
    Li Y, Kranias EG, Mignery GA, Bers DM (2002) Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res 90:309–316. doi: 10.1161/hh0302.105660 PubMedCrossRefGoogle Scholar
  62. 62.
    Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240. doi: 10.1172/JCI38022 PubMedCrossRefGoogle Scholar
  63. 63.
    Luo M, Guan X, Luczak ED, Di L, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, Weiss RM, Yang B, Rokita AG, Maier LS, Efimov I, Hund TJ, Anderson ME (2013) Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest 123:1262–1274. doi: 10.1172/JCI65268 PubMedCrossRefGoogle Scholar
  64. 64.
    Maack C (2013) Myocardial energetics in heart failure. Basic Res Cardiol (in press)Google Scholar
  65. 65.
    Maier LS, Barckhausen P, Weisser J, Aleksic I, Baryalei M, Pieske B (2000) Ca2+ handling in isolated human atrial myocardium. Am J Physiol Heart Circ Physiol 279:H952–H958. doi: 10.1016/j.cardiores.2006.11.005 PubMedGoogle Scholar
  66. 66.
    Maier LS, Bers DM (2007) Role of Ca/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73:631–640. doi: 10.1016/j.cardiores.2006.11.005 PubMedCrossRefGoogle Scholar
  67. 67.
    Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Lee S, Sander J, Lang C, Wachter R, Edelmann F, Hasenfuss G, Jacobshagen C (2013) RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC: Heart Fail 1:115–122.2013. doi: 10.1016/j.jchf.2012.12.002
  68. 68.
    Maier LS, Pieske B, Allen DG (1997) Influence of stimulation frequency on [Na+]i and contractile function in Langendorff-perfused rat heart. Am J Physiol 273:H1246–H1254PubMedGoogle Scholar
  69. 69.
    Maier LS, Wahl-Schott C, Horn W, Weichert S, Pagel C, Wagner S, Dybkova N, Müller OJ, Näbauer M, Franz WM, Pieske B (2005) Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats. Cardiovasc Res 67:636–646. doi: 10.1016/j.cardiores.2005.05.006 PubMedCrossRefGoogle Scholar
  70. 70.
    Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911. doi: 10.1161/01.RES.0000069685.20258.F1 PubMedCrossRefGoogle Scholar
  71. 71.
    Maier LS, Ziolo MT, Bossuyt J, Persechini A, Mestril R, Bers DM (2006) Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. J Mol Cell Cardiol 41:451–458. doi: 10.1016/j.yjmcc.2006.04.020 PubMedCrossRefGoogle Scholar
  72. 72.
    Maltsev VA, Sabbah HN, Higgins RSD, Silverman N, Lesch M, Undrovinas AI (1998) Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation 98:2545–2552. doi: 10.1161/01.CIR.98.23.2545 PubMedCrossRefGoogle Scholar
  73. 73.
    Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (2001) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 153:699–708. doi: 10.1083/jcb.153.4.699 PubMedCrossRefGoogle Scholar
  74. 74.
    Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376. doi: 10.1016/S0092-8674(00)80847-8 PubMedCrossRefGoogle Scholar
  75. 75.
    Matsumoto T, Hisamatsu Y, Ohkusa T, Inoue N, Sato T, Suzuki S, Ikeda Y, Matsuzaki M (2005) Sorcin interacts with sarcoplasmic reticulum Ca2+-ATPase and modulates excitation-contraction coupling in the heart. Basic Res Cardiol 100:250–262. doi: 10.1007/s00395-005-0518-7 PubMedCrossRefGoogle Scholar
  76. 76.
    Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784. doi: 10.1161/01.CIR.92.4.778 PubMedCrossRefGoogle Scholar
  77. 77.
    Mironneau J, Arnaudeau S, Macrez-Lepretre N, Boittin FX (1996) Ca2+ sparks and Ca2+ waves activate different Ca2+-dependent ion channels in single myocytes from rat portal vein. Cell Calcium 20:153–160PubMedCrossRefGoogle Scholar
  78. 78.
    Mishra S, Sabbah HN, Jain JC, Gupta RC (2003) Reduced Ca2+-calmodulin-dependent protein kinase activity and expression in LV myocardium of dogs with heart failure. Am J Physiol Heart Circ Physiol 284:H876–H883. doi: 10.1152/ajpheart.00266.2002 PubMedGoogle Scholar
  79. 79.
    Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, Grobbee DE (2001) The prognosis of heart failure in the general population: the Rotterdam study. Eur Heart J 22:1318–1327. doi: 10.1053/euhj.2000.2533 PubMedCrossRefGoogle Scholar
  80. 80.
    Nattel S, Dobrev D (2012) The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur Heart J 33:1870–1877. doi: 10.1093/eurheartj/ehs079 PubMedCrossRefGoogle Scholar
  81. 81.
    Neef S, Sag CM, Daut M, Bäumer H, Grefe C, El-Armouche A, DeSantiago J, Pereira L, Bers DM, Backs J, Maier LS (2013) While systolic cardiomyocyte function is preserved, diastolic myocyte function and recovery from acidosis are impaired in CaMKIIδ-KO mice. J Mol Cell Cardiol 59:107–116. doi: 10.1016/j.yjmcc.2013.02.014 PubMedCrossRefGoogle Scholar
  82. 82.
    Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schöndube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144. doi: 10.1161/CIRCRESAHA.109.203836 PubMedCrossRefGoogle Scholar
  83. 83.
    Neef S, Maier LS (2007) Remodeling of excitation-contraction coupling in the heart: inhibition of sarcoplasmic reticulum Ca2+ leak as a novel therapeutic approach. Curr Heart Fail Rep. 4:11–17. doi: 10.1007/s11897-007-0020-7 PubMedCrossRefGoogle Scholar
  84. 84.
    Netticadan T, Temsah RM, Kawabata K, Dhalla NS (2000) Sarcoplasmic reticulum Ca2+/Calmodulin-dependent protein kinase is altered in heart failure. Circ Res 86:596–605. doi: 10.1161/01.RES.86.5.596 PubMedCrossRefGoogle Scholar
  85. 85.
    Neumann J, Eschenhagen T, Jones LR, Linck B, Schmitz W, Scholz H, Zimmermann N (1997) Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 29:265–272. doi: 10.1006/jmcc.1996.0271 PubMedCrossRefGoogle Scholar
  86. 86.
    Neumann T, Ravens U, Heusch G (1998) Characterization of excitation–contraction coupling in conscious dogs with pacing-induced heart failure. Cardiovasc Res 37:456–466PubMedCrossRefGoogle Scholar
  87. 87.
    Packer M (1985) Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72:681–685. doi: 10.1161/01.CIR.72.4.681 PubMedCrossRefGoogle Scholar
  88. 88.
    Pereira L, Cheng H, Lao DH, Na L, van Oort RJ, Heller Brown J, Wehrens XH, Chen J, Bers DM (2013) Epac2 mediates cardiac β1-adrenergic dependent SR Ca2+ leak and arrhythmia. Circulation 127:913–922. doi: 10.1161/CIRCULATIONAHA.12.148619 PubMedCrossRefGoogle Scholar
  89. 89.
    Pieske B, Maier LS, Bers DM, Hasenfuss G (1999) Ca2+ handling and Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res 85:38–46. doi: 10.1161/01.RES.85.1.38 PubMedCrossRefGoogle Scholar
  90. 90.
    Pieske B, Maier LS, Piacentino V 3rd, Weisser J, Hasenfuss G, Houser S (2002) Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 106:447–453. doi: 10.1161/01.CIR.0000023042.50192.F4 PubMedCrossRefGoogle Scholar
  91. 91.
    Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019. doi: 10.1161/01.RES.85.11.1009 PubMedCrossRefGoogle Scholar
  92. 92.
    Ramirez RJ, Sah R, Liu J, Rose RA, Backx PH (2011) Intracellular [Na+] modulates synergy between Na+/Ca2+ exchanger and L-type Ca2+ current in cardiac excitation-contraction coupling during action potentials. Basic Res Cardiol 106:967–977. doi: 10.1007/s00395-011-0202-z PubMedCrossRefGoogle Scholar
  93. 93.
    Respress JL, van Oort RJ, Li N, Rolim N, Dixit SS, deAlmeida A, Voigt N, Lawrence WS, Skapura DG, Skårdal K, Wisløff U, Wieland T, Ai X, Pogwizd SM, Dobrev D, Wehrens XH (2012) Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res 110:1474–1483. doi: 10.1161/CIRCRESAHA.112.268094 PubMedCrossRefGoogle Scholar
  94. 94.
    Rienzo M, Bizé A, Pongas D, Michineau S, Melka J, Chan HL, Sambin L, Su JB, Dubois-Randé JL, Hittinger L, Berdeaux A, Ghaleh B (2012) Impaired left ventricular function in the presence of preserved ejection in chronic hypertensive conscious pigs. Basic Res Cardiol 107:298. doi: 10.1007/s00395-012-0298-9 PubMedCrossRefGoogle Scholar
  95. 95.
    Rokita AG, Anderson ME (2012) New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation 126:2125–2139. doi: 10.1161/CIRCULATIONAHA.112.124990 PubMedCrossRefGoogle Scholar
  96. 96.
    Sacherer M, Sedej S, Wakuła P, Wallner M, Vos MA, Kockskämper J, Stiegler P, Sereinigg M, von Lewinski D, Antoons G, Pieske BM, Heinzel FR (2012) JTV519 (K201) reduces sarcoplasmic reticulum Ca2+ leak and improves diastolic function in vitro in ouabain-induced cellular Ca2+ overload in murine and human non-failing myocardium. Br J Pharmacol 167:493–504. doi: 10.1111/j.1476-5381.2012.01995.x PubMedCrossRefGoogle Scholar
  97. 97.
    Sag CM, Dybkova N, Neef S, Maier LS (2007) Effects on recovery during acidosis in cardiac myocytes overexpressing CaMKII. J Mol Cell Cardiol 43:696–709. doi: 10.1016/j.yjmcc.2007.09.008 PubMedCrossRefGoogle Scholar
  98. 98.
    Sag CM, Köhler AC, Anderson ME, Backs J, Maier LS (2011) CaMKII-dependent SR Ca leak contributes to doxo-rubicin-induced impaired Ca handling in isolated cardiac myocytes. J Mol Cell Cardiol 51:749–759. doi: 10.1016/j.yjmcc.2011.07.016 PubMedCrossRefGoogle Scholar
  99. 99.
    Sag CM, Wadsack DP, Khabbazzadeh S, Abesser M, Grefe C, Neumann K, Opiela MK, Backs J, Olson EN, Brown JH, Neef S, Maier SK, Maier LS (2009) Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail 2:664–675. doi: 10.1161/CIRCHEARTFAILURE.109.865279 PubMedCrossRefGoogle Scholar
  100. 100.
    Sande JB, Sjaastad I, Hoen IB, Bøkenes J, Tønnessen T, Holt E, Lunde PK, Christensen G (2002) Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity. Cardiovasc Res 53:382–391. doi: 10.1016/S0008-6363(01)00489-8 PubMedCrossRefGoogle Scholar
  101. 101.
    Schillinger W, Lehnart SE, Prestle J, Preuss M, Pieske B, Maier LS, Meyer M, Just H, Hasenfuss G (1998) Influence of SR Ca2+-ATPase and Na+-Ca2+-exchanger on the force-frequency relation. Basic Res Cardiol 93(Suppl 1):38–45. doi: 10.1007/s003950050208 PubMedCrossRefGoogle Scholar
  102. 102.
    Schlotthauer K, Schattmann J, Bers DM, Maier LS, Schütt U, Minami K, Just H, Hasenfuss G, Pieske B (1998) Frequency-dependent changes in contribution of SR Ca2+ to Ca2+ transients in failing human myocardium assessed with ryanodine. J Mol Cell Cardiol 30:1285–1294. doi: 10.1006/jmcc.1998.0690 PubMedCrossRefGoogle Scholar
  103. 103.
    Schwinger RH, Brixius K, Bavendiek U, Hoischen S, Müller-Ehmsen J, Bölck B, Erdmann E (1997) Effect of cyclopiazonic acid on the force-frequency relationship in human nonfailing myocardium. J Pharmacol Exp Ther 283:286–292PubMedGoogle Scholar
  104. 104.
    Schwinger RH, Münch G, Bölck B, Karczewski P, Krause EG, Erdmann E (1999) Reduced Ca2+-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31:479–491. doi: 10.1006/jmcc.1998.0897 PubMedCrossRefGoogle Scholar
  105. 105.
    Seidler T, Teucher N, Hellenkamp K, Unsöld B, Grebe C, Kramps P, Schotola H, Wagner S, Schöndube FA, Hasenfuss G, Maier LS (2011) Limitations of FKBP12.6-directed treatment strategies for maladaptive cardiac remodeling and heart failure. J Mol Cell Cardiol 50:33–42. doi: 10.1016/j.yjmcc.2010.08.016 PubMedCrossRefGoogle Scholar
  106. 106.
    Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A, Soboloff J, Gill DL, Inesi G (2004) Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101:16683–16688. doi: 10.1073/pnas.0407537101 PubMedCrossRefGoogle Scholar
  107. 107.
    Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX, Marks AR (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest 120:4375–4387. doi: 10.1172/JCI37649 PubMedCrossRefGoogle Scholar
  108. 108.
    Shannon TR, Pogwizd SM, Bers DM (2003) Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93:592–594. doi: 10.1161/01.RES.0000093399.11734.B3 PubMedCrossRefGoogle Scholar
  109. 109.
    Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittköpper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107:1150–1161. doi: 10.1161/CIRCRESAHA.110.220418 PubMedCrossRefGoogle Scholar
  110. 110.
    Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K, Schmitto JD, Seipelt R, Schöndube F, Hasenfuss G, Belardinelli L, Maier LS (2010) Altered Na+ currents in atrial fibrillation: effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342. doi: 10.1016/j.jacc.2009.12.055 PubMedCrossRefGoogle Scholar
  111. 111.
    Sossalla S, Maurer U, Schotola H, Hartmann N, Didié M, Zimmermann WH, Jacobshagen C, Wagner S, Maier LS (2011) Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current. Basic Res Cardiol 106:263–272. doi: 10.1007/s00395-010-0136-x PubMedCrossRefGoogle Scholar
  112. 112.
    Sossalla S, Wagner S, Rasenack EC, Ruff H, Weber SL, Schöndube FA, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier LS (2008) Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts-role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol 45:32–43. doi: 10.1016/j.yjmcc.2008.03.006 PubMedCrossRefGoogle Scholar
  113. 113.
    Toischer K, Lehnart SE, Tenderich G, Milting H, Körfer R, Schmitto JD, Schöndube FA, Kaneko N, Loughrey CM, Smith GL, Hasenfuss G, Seidler T (2010) K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res Cardiol 105:279–287. doi: 10.1007/s00395-009-0057-8 PubMedCrossRefGoogle Scholar
  114. 114.
    Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuß L, Gupta SN, Schmidt K, Lehnart SE, Krüger M, Linke WA, Backs J, Regitz-Zagrosek V, Schäfer K, Field LJ, Maier LS, Hasenfuss G (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003. doi: 10.1161/CIRCULATIONAHA.110.943431 PubMedCrossRefGoogle Scholar
  115. 115.
    Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463PubMedCrossRefGoogle Scholar
  116. 116.
    Vinet L, Pezet M, Bito V, Briec F, Biesmans L, Rouet-Benzineb P, Gellen B, Prévilon M, Chimenti S, Vilaine JP, Charpentier F, Sipido KR, Mercadier JJ (2012) Cardiac FKBP12.6 overexpression protects against triggered ventricular tachycardia in pressure overloaded mouse hearts. Basic Res Cardiol 107:246. doi: 10.1007/s00395-012-0246-8
  117. 117.
    Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+-leak and increased Na+-Ca2+-exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. doi: 10.1161/CIRCULATIONAHA.111.067306 PubMedCrossRefGoogle Scholar
  118. 118.
    Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS (2006) Ca/calmodulin-dependent protein kinase II regulates cardiac Na channels. J Clin Invest 116:3127–3138. doi: 10.1172/JCI26620 PubMedCrossRefGoogle Scholar
  119. 119.
    Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2:285–294. doi: 10.1161/CIRCEP.108.842799 PubMedCrossRefGoogle Scholar
  120. 120.
    Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS (2011) ROS-activated Ca/calmodulin kinase IIδ is required for late INa augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565. doi: 10.1161/CIRCRESAHA.110.221911 PubMedCrossRefGoogle Scholar
  121. 121.
    Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D’Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840. doi: 10.1016/S0092-8674(03)00434-3 PubMedCrossRefGoogle Scholar
  122. 122.
    Wehrens XH, Lehnart SE, Marks AR (2005) Intracellular calcium release and cardiac disease. Annu Rev Physiol 67:69–98. doi: 10.1146/annurev.physiol.67.040403.114521 PubMedCrossRefGoogle Scholar
  123. 123.
    Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304:292–296. doi: 10.1126/science.1094301 PubMedCrossRefGoogle Scholar
  124. 124.
    Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:61–70. doi: 10.1161/01.RES.0000125626.33738.E2 CrossRefGoogle Scholar
  125. 125.
    Wittköpper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsöld B, Kirchhof P, Maier LS, Hasenfuss G, Dobrev D, Eschenhagen T, El-Armouche A (2010) Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 120:617–626. doi: 10.1172/JCI40545 PubMedGoogle Scholar
  126. 126.
    Xiao B, Jiang MT, Zhao M, Yang D, Sutherland C, Lai FA, Walsh MP, Warltier DC, Cheng H, Chen SR (2005) Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res 96:847–855. doi: 10.1161/01.RES.0000163276.26083.e8 PubMedCrossRefGoogle Scholar
  127. 127.
    Xiao B, Sutherland C, Walsh MP, Chen SR (2004) Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res 94:487–495. doi: 10.1161/01.RES.0000115945.89741.22 PubMedCrossRefGoogle Scholar
  128. 128.
    Yano M, Ikeda Y, Matsuzaki M (2005) Altered intracellular Ca2+ handling in heart failure. J Clin Invest 115:556–564. doi: 10.1172/JCI200524159 PubMedGoogle Scholar
  129. 129.
    Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, Suetsugu M, Hisaoka T, Obayashi M, Ohkusa T, Kohno M, Matsuzaki M (2003) FKBP 12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107:477–484. doi: 10.1161/01.CIR.0000044917.74408.BE PubMedCrossRefGoogle Scholar
  130. 130.
    Zhang H, Makarewich CA, Kubo H, Wang W, Duran JM, Li Y, Berretta RM, Koch WJ, Chen X, Gao E, Valdivia HH, Houser SR (2012) Hyperphosphorylation of the cardiac ryanodine receptor at serine 2808 is not involved in cardiac dysfunction after myocardial infarction. Circ Res 110:831–840. doi: 10.1161/CIRCRESAHA.111.255158 PubMedCrossRefGoogle Scholar
  131. 131.
    Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397. doi: 10.1074/jbc.272.37.23389 PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang R, Khoo MS, Wu Y, Yang Y, Grueter CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS, Madu EC, Shah AN, Vishnivetskaya TA, Atkinson JB, Gurevich VV, Salama G, Lederer WJ, Colbran RJ, Anderson ME (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11:409–417. doi: 10.1038/nm1215 PubMedCrossRefGoogle Scholar
  133. 133.
    Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP (2003) Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111:617–625. doi: 10.1172/JCI16326 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Abt. Kardiologie und Pneumologie/HerzzentrumGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations