Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels

  • Indra Lübkemeier
  • Robert Pascal Requardt
  • Xianming Lin
  • Philipp Sasse
  • René Andrié
  • Jan Wilko Schrickel
  • Halina Chkourko
  • Feliksas F. Bukauskas
  • Jung-Sun Kim
  • Marina Frank
  • Daniela Malan
  • Jiong Zhang
  • Angela Wirth
  • Radoslaw Dobrowolski
  • Peter J. Mohler
  • Stefan Offermanns
  • Bernd K. Fleischmann
  • Mario Delmar
  • Klaus Willecke
Original Contribution

Abstract

The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function.

Keywords

Connexin43 Zonula occludens protein-1 Nav1.5 Intercalated disc 

Supplementary material

395_2013_348_MOESM1_ESM.pdf (242 kb)
Supplementary material 1 (PDF 242 kb)
395_2013_348_MOESM2_ESM.pdf (1.3 mb)
Supplementary material 2 (PDF 1344 kb)

Supplementary material 3 (MPG 366 kb)

References

  1. 1.
    Agah R, Frenkel PA, French BA, Michael LH, Overbeek PA, Schneider MD (1997) Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J Clin Invest 100:169–179. doi:10.1172/JCI119509 PubMedCrossRefGoogle Scholar
  2. 2.
    Asimaki A, Tandri H, Huang H, Halushka MK, Gautam S, Basso C, Thiene G, Tsatsopoulou A, Protonotarios N, McKenna WJ, Calkins H, Saffitz JE (2009) A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 360:1075–1084. doi:10.1056/NEJMoa0808138 PubMedCrossRefGoogle Scholar
  3. 3.
    Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244. doi:10.1016/j.cardiores.2005.04.014 PubMedCrossRefGoogle Scholar
  4. 4.
    Bruce AF, Rothery S, Dupont E, Severs NJ (2008) Gap junction remodelling in human heart failure is associated with increased interaction of connexin 43 with ZO-1. Cardiovasc Res 77:757–765. doi:10.1093/cvr/cvm083 PubMedCrossRefGoogle Scholar
  5. 5.
    Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60. doi:10.1016/j.bbamem.2004.01.008 PubMedCrossRefGoogle Scholar
  6. 6.
    Casini S, Tan HL, Demirayak I, Remme CA, Amin AS, Scicluna BP, Chatyan H, Ruijter JM, Bezzina CR, van Ginneken AC, Veldkamp MW (2010) Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovasc Res 85:691–700. doi:10.1093/cvr/cvp352 PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng L, Yung A, Covarrubias M, Radice GL (2011) Cortactin is required for N-cadherin regulation of Kv 1.5 channel function. J Biol Chem 286:20478–20489. doi:10.1074/jbc.M111.218560 PubMedCrossRefGoogle Scholar
  8. 8.
    Chkourko HS, Guerrero-Serna G, Lin X, Darwish N, Pohlmann JR, Cook KE, Martens JR, Rothenberg E, Musa H, Delmar M (2012) Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization. Heart Rhythm 9(1133–1140):e1136. doi:10.1016/j.hrthm.2012.03.003 Google Scholar
  9. 9.
    Danik SB, Rosner G, Lader J, Gutstein DE, Fishman GI, Morley GE (2008) Electrical remodeling contributes to complex tachyarrhythmias in connexin43-deficient mouse hearts. FASEB J 22:1204–1212. doi:10.1096/fj.07-8974com PubMedCrossRefGoogle Scholar
  10. 10.
    Delmar M (2012) Connexin43 regulates sodium current; ankyrin-G modulates gap junctions: the intercalated disc exchanger. Cardiovasc Res 93:220–222. doi:10.1093/cvr/cvr343 PubMedCrossRefGoogle Scholar
  11. 11.
    Delmar M (2012) Desmosome-ion channel interactions and their possible role in arrhythmogenic cardiomyopathy. Pediatr Cardiol 33:975–979. doi:10.1007/s00246-012-0257-0 PubMedCrossRefGoogle Scholar
  12. 12.
    Delmar M, Liang FX (2012) Connexin43 and the regulation of intercalated disc function. Heart Rhythm 9:835–838. doi:10.1016/j.hrthm.2011.10.028 PubMedCrossRefGoogle Scholar
  13. 13.
    Desplantez T, McCain ML, Beauchamp P, Rigoli G, Rothen-Rutishauser B, Parker KK, Kleber AG (2012) Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovasc Res 94:58–65. doi:10.1093/cvr/cvs025 PubMedCrossRefGoogle Scholar
  14. 14.
    Eckardt D, Kirchhoff S, Kim JS, Degen J, Theis M, Ott T, Wiesmann F, Doevendans PA, Lamers WH, de Bakker JM, van Rijen HV, Schneider MD, Willecke K (2006) Cardiomyocyte-restricted deletion of connexin43 during mouse development. J Mol Cell Cardiol 41:963–971. doi:10.1016/j.yjmcc.2006.07.017 PubMedCrossRefGoogle Scholar
  15. 15.
    Eckardt D, Theis M, Degen J, Ott T, van Rijen HV, Kirchhoff S, Kim JS, de Bakker JM, Willecke K (2004) Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion. J Mol Cell Cardiol 36:101–110PubMedCrossRefGoogle Scholar
  16. 16.
    Fontes MS, van Veen TA, de Bakker JM, van Rijen HV (2012) Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta 1818:2020–2029. doi:10.1016/j.bbamem.2011.07.039 PubMedCrossRefGoogle Scholar
  17. 17.
    Francis R, Xu X, Park H, Wei CJ, Chang S, Chatterjee B, Lo C (2011) Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics. PLoS ONE 6:e26379. doi:10.1371/journal.pone.0026379 PubMedCrossRefGoogle Scholar
  18. 18.
    Franke WW, Schumacher H, Borrmann CM, Grund C, Winter-Simanowski S, Schlechter T, Pieperhoff S, Hofmann I (2007) The area composita of adhering junctions connecting heart muscle cells of vertebrates-III: assembly and disintegration of intercalated disks in rat cardiomyocytes growing in culture. Eur J Cell Biol 86:127–142. doi:10.1016/j.ejcb.2006.11.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Giepmans BN, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8:931–934PubMedCrossRefGoogle Scholar
  20. 20.
    Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65 PubMedCrossRefGoogle Scholar
  21. 21.
    Herr C, Smyth N, Ullrich S, Yun F, Sasse P, Hescheler J, Fleischmann B, Lasek K, Brixius K, Schwinger RH, Fassler R, Schroder R, Noegel AA (2001) Loss of annexin A7 leads to alterations in frequency-induced shortening of isolated murine cardiomyocytes. Mol Cell Biol 21:4119–4128. doi:10.1128/MCB.21.13.4119-4128.2001 PubMedCrossRefGoogle Scholar
  22. 22.
    Hirst-Jensen BJ, Sahoo P, Kieken F, Delmar M, Sorgen PL (2007) Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains. J Biol Chem 282:5801–5813. doi:10.1074/jbc.M605233200 PubMedCrossRefGoogle Scholar
  23. 23.
    Hund TJ, Koval OM, Li J, Wright PJ, Qian L, Snyder JS, Gudmundsson H, Kline CF, Davidson NP, Cardona N, Rasband MN, Anderson ME, Mohler PJ (2010) A beta(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest 120:3508–3519. doi:10.1172/JCI43621 PubMedCrossRefGoogle Scholar
  24. 24.
    Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16:5686–5698. doi:10.1091/mbc.E05-08-0737 PubMedCrossRefGoogle Scholar
  25. 25.
    Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138:181–192PubMedCrossRefGoogle Scholar
  26. 26.
    Jansen JA, Noorman M, Musa H, Stein M, de Jong S, van der Nagel R, Hund TJ, Mohler PJ, Vos MA, van Veen TA, de Bakker JM, Delmar M, van Rijen HV (2012) Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9:600–607. doi:10.1016/j.hrthm.2011.11.025 PubMedCrossRefGoogle Scholar
  27. 27.
    Kanaporis G, Brink PR, Valiunas V (2011) Gap junction permeability: selectivity for anionic and cationic probes. Am J Physiol Cell Physiol 300:C600–C609. doi:10.1152/ajpcell.00316.2010 PubMedCrossRefGoogle Scholar
  28. 28.
    Kaplan SR, Gard JJ, Protonotarios N, Tsatsopoulou A, Spiliopoulou C, Anastasakis A, Squarcioni CP, McKenna WJ, Thiene G, Basso C, Brousse N, Fontaine G, Saffitz JE (2004) Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm 1:3–11. doi:10.1016/j.hrthm.2004.01.001 PubMedCrossRefGoogle Scholar
  29. 29.
    Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104:1103–1112. doi:10.1161/CIRCRESAHA.108.190454 PubMedCrossRefGoogle Scholar
  30. 30.
    Koval OM, Snyder JS, Wolf RM, Pavlovicz RE, Glynn P, Curran J, Leymaster ND, Dun W, Wright PJ, Cardona N, Qian L, Mitchell CC, Boyden PA, Binkley PF, Li C, Anderson ME, Mohler PJ, Hund TJ (2012) Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease. Circulation 126:2084–2094. doi:10.1161/CIRCULATIONAHA.112.105320 PubMedCrossRefGoogle Scholar
  31. 31.
    Kucera JP, Rohr S, Rudy Y (2002) Localization of sodium channels in intercalated disks modulates cardiac conduction. Circ Res 91:1176–1182PubMedCrossRefGoogle Scholar
  32. 32.
    Lammers WJ, Schalij MJ, Kirchhof CJ, Allessie MA (1990) Quantification of spatial inhomogeneity in conduction and initiation of reentrant atrial arrhythmias. Am J Physiol 259:H1254–H1263PubMedGoogle Scholar
  33. 33.
    Li J, Goossens S, van Hengel J, Gao E, Cheng L, Tyberghein K, Shang X, De Rycke R, van Roy F, Radice GL (2012) Loss of alphaT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia. J Cell Sci 125:1058–1067. doi:10.1242/jcs.098640 PubMedCrossRefGoogle Scholar
  34. 34.
    Lin X, Gemel J, Beyer EC, Veenstra RD (2005) Dynamic model for ventricular junctional conductance during the cardiac action potential. Am J Physiol Heart Circ Physiol 288:H1113–H1123. doi:10.1152/ajpheart.00882.2004 PubMedCrossRefGoogle Scholar
  35. 35.
    Lin X, Liu N, Lu J, Zhang J, Anumonwo JM, Isom LL, Fishman GI, Delmar M (2011) Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm 8:1923–1930. doi:10.1016/j.hrthm.2011.07.016 PubMedCrossRefGoogle Scholar
  36. 36.
    Maass K, Chase SE, Lin X, Delmar M (2009) Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovasc Res 84:361–367. doi:10.1093/cvr/cvp250 PubMedCrossRefGoogle Scholar
  37. 37.
    Maass K, Ghanem A, Kim JS, Saathoff M, Urschel S, Kirfel G, Grummer R, Kretz M, Lewalter T, Tiemann K, Winterhager E, Herzog V, Willecke K (2004) Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell 15:4597–4608. doi:10.1091/mbc.E04-04-0324 PubMedCrossRefGoogle Scholar
  38. 38.
    Maass K, Shibayama J, Chase SE, Willecke K, Delmar M (2007) C-terminal truncation of connexin43 changes number, size, and localization of cardiac gap junction plaques. Circ Res 101:1283–1291. doi:10.1161/CIRCRESAHA.107.162818 PubMedCrossRefGoogle Scholar
  39. 39.
    Malhotra JD, Thyagarajan V, Chen C, Isom LL (2004) Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J Biol Chem 279:40748–40754. doi:10.1074/jbc.M407243200 PubMedCrossRefGoogle Scholar
  40. 40.
    Murray KT, Anno T, Bennett PB, Hondeghem LM (1990) Voltage clamp of the cardiac sodium current at 37 °C in physiologic solutions. Biophys J 57:607–613. doi:10.1016/S0006-3495(90)82576-5 PubMedCrossRefGoogle Scholar
  41. 41.
    O’Quinn MP, Palatinus JA, Harris BS, Hewett KW, Gourdie RG (2011) A peptide mimetic of the connexin43 carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury. Circ Res 108:704–715. doi:10.1161/CIRCRESAHA.110.235747 PubMedCrossRefGoogle Scholar
  42. 42.
    Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1993) Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88:864–875PubMedCrossRefGoogle Scholar
  43. 43.
    Petitprez S, Zmoos AF, Ogrodnik J, Balse E, Raad N, El-Haou S, Albesa M, Bittihn P, Luther S, Lehnart SE, Hatem SN, Coulombe A, Abriel H (2011) SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res 108:294–304. doi:10.1161/CIRCRESAHA.110.228312 PubMedCrossRefGoogle Scholar
  44. 44.
    Rackauskas M, Kreuzberg MM, Pranevicius M, Willecke K, Verselis VK, Bukauskas FF (2007) Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys J 92:1952–1965. doi:10.1529/biophysj.106.099358 PubMedCrossRefGoogle Scholar
  45. 45.
    Rackauskas M, Verselis VK, Bukauskas FF (2007) Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43, and Cx45. Am J Physiol Heart Circ Physiol 293:H1729–H1736. doi:10.1152/ajpheart.00234.2007 PubMedCrossRefGoogle Scholar
  46. 46.
    Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834PubMedCrossRefGoogle Scholar
  47. 47.
    Rhett JM, Jourdan J, Gourdie RG (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell 22:1516–1528. doi:10.1091/mbc.E10-06-0548 PubMedCrossRefGoogle Scholar
  48. 48.
    Rhett JM, Ongstad EL, Jourdan J, Gourdie RG (2012) Cx43 associates with Na(v)1.5 in the cardiomyocyte perinexus. J Membr Biol 245:411–422. doi:10.1007/s00232-012-9465-z PubMedCrossRefGoogle Scholar
  49. 49.
    Sato PY, Coombs W, Lin X, Nekrasova O, Green KJ, Isom LL, Taffet SM, Delmar M (2011) Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ Res 109:193–201. doi:10.1161/CIRCRESAHA.111.247023 PubMedCrossRefGoogle Scholar
  50. 50.
    Sato PY, Musa H, Coombs W, Guerrero-Serna G, Patino GA, Taffet SM, Isom LL, Delmar M (2009) Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res 105:523–526. doi:10.1161/CIRCRESAHA.109.201418 PubMedCrossRefGoogle Scholar
  51. 51.
    Schrickel JW, Brixius K, Herr C, Clemen CS, Sasse P, Reetz K, Grohe C, Meyer R, Tiemann K, Schroder R, Bloch W, Nickenig G, Fleischmann BK, Noegel AA, Schwinger RH, Lewalter T (2007) Enhanced heterogeneity of myocardial conduction and severe cardiac electrical instability in annexin A7-deficient mice. Cardiovasc Res 76:257–268. doi:10.1016/j.cardiores.2007.07.001 PubMedCrossRefGoogle Scholar
  52. 52.
    Severs NJ (2007) The carboxy terminal domain of connexin43: from molecular regulation of the gap junction channel to supramolecular organization of the intercalated disk. Circ Res 101:1213–1215. doi:10.1161/CIRCRESAHA.107.165662 PubMedCrossRefGoogle Scholar
  53. 53.
    Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560. doi:10.1016/j.cell.2006.12.037 PubMedCrossRefGoogle Scholar
  54. 54.
    Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC (2004) Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. J Biol Chem 279:54695–54701. doi:10.1074/jbc.M409552200 PubMedCrossRefGoogle Scholar
  55. 55.
    Takefuji M, Wirth A, Lukasova M, Takefuji S, Boettger T, Braun T, Althoff T, Offermanns S, Wettschureck N (2012) G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. Circulation 126:1972–1982. doi:10.1161/CIRCULATIONAHA.112.109256 PubMedCrossRefGoogle Scholar
  56. 56.
    Vaidya D, Tamaddon HS, Lo CW, Taffet SM, Delmar M, Morley GE, Jalife J (2001) Null mutation of connexin43 causes slow propagation of ventricular activation in the late stages of mouse embryonic development. Circ Res 88:1196–1202PubMedCrossRefGoogle Scholar
  57. 57.
    Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De Bock M, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L (2013) Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 108:309. doi:10.1007/s00395-012-0309-x PubMedCrossRefGoogle Scholar
  58. 58.
    Yeager M, Gilula NB (1992) Membrane topology and quaternary structure of cardiac gap junction ion channels. J Mol Biol 223:929–948PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Indra Lübkemeier
    • 1
  • Robert Pascal Requardt
    • 2
  • Xianming Lin
    • 3
  • Philipp Sasse
    • 4
  • René Andrié
    • 5
  • Jan Wilko Schrickel
    • 5
  • Halina Chkourko
    • 3
  • Feliksas F. Bukauskas
    • 6
  • Jung-Sun Kim
    • 7
  • Marina Frank
    • 1
  • Daniela Malan
    • 4
  • Jiong Zhang
    • 8
  • Angela Wirth
    • 9
  • Radoslaw Dobrowolski
    • 10
  • Peter J. Mohler
    • 11
  • Stefan Offermanns
    • 9
  • Bernd K. Fleischmann
    • 4
  • Mario Delmar
    • 3
  • Klaus Willecke
    • 1
  1. 1.Life and Medical Sciences (LIMES) Institute, Molecular GeneticsUniversity of BonnBonnGermany
  2. 2.Center for Sepsis Control and Care (CSCC)Jena University HospitalJenaGermany
  3. 3.Leon H. Charney Division of CardiologyNew York University Medical SchoolNew YorkUSA
  4. 4.Institute of Physiology I, Life and Brain CenterUniversity of BonnBonnGermany
  5. 5.Institute of Medicine-CardiologyUniversity of BonnBonnGermany
  6. 6.Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineNew YorkUSA
  7. 7.Department of Pathology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  8. 8.Institute of Cellular NeurosciencesUniversity of BonnBonnGermany
  9. 9.Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
  10. 10.Department of Biological SciencesRutgers UniversityNewarkUSA
  11. 11.Departments of Internal Medicine and Physiology, Dorothy M. Davis Heart and Lung Research InstituteOhio State University Medical CenterColumbusUSA

Personalised recommendations