Electrical storm: recent pathophysiological insights and therapeutic consequences

  • Yukiomi Tsuji
  • Jordi Heijman
  • Stanley Nattel
  • Dobromir DobrevEmail author


The implantable cardioverter-defibrillator significantly improves survival in patients with malignant ventricular arrhythmias but does not target the underlying pathological substrate responsible for arrhythmic events. A significant proportion of defibrillator recipients experience multiple ventricular tachycardia/fibrillation episodes over a short period of time, termed electrical storm (ES). The current therapeutic strategy for ES is complex and unsatisfactory because simultaneous administration of several medications and additional invasive procedures are often required to control ES. Moreover, this treatment does not favorably influence the long-term outcome. Clearly, improved ES therapies are necessary and desirable, but a lack of understanding of the pathophysiological mechanisms underlying ES has hindered the development of more effective, rationally based therapeutic approaches. This paper reviews emerging experimental and clinical findings that provide insights into the pathophysiology of ES and discusses mechanism-based innovative therapeutic strategies.


Cardiac arrhythmias Electrical storm Recurrent VT/VF ICD CaMKII 



The authors’ work is supported by the European Network for Translational Research in Atrial Fibrillation (EUTRAF), the German Federal Ministry of Education and Research (AF Competence Network and DZHK [German Center for Cardiovascular Research]), the Deutsche Forschungsgemeinschaft (Do 769/1-3), the Canadian Institutes of Health Research (MOP 68929), the Quebec Heart and Stroke Foundation, Fondation Leducq (European-North American Atrial Fibrillation Research Alliance, 07CVD03), Mochida Memorial Foundation for Medical and Pharmaceutical Research, Mitsubishi Pharma Research Foundation, Suzuken Memorial Foundation and Medtronic Japan, APEX and CTM Co., Ltd (Nagoya, Japan).


  1. 1.
    Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322. doi: 10.1161/01.RES.0000194329.41863.89 PubMedCrossRefGoogle Scholar
  2. 2.
    Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT (2002) Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc Natl Acad Sci U S A 99:17185–17190. doi: 10.1073/pnas.262372999 PubMedCrossRefGoogle Scholar
  3. 3.
    Amin AS, Giudicessi JR, Tijsen AJ, Spanjaart AM, Reckman YJ, Klemens CA, Tanck MW, Kapplinger JD, Hofman N, Sinner MF, Muller M, Wijnen WJ, Tan HL, Bezzina CR, Creemers EE, Wilde AA, Ackerman MJ, Pinto YM (2012) Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J 33:714–723. doi: 10.1093/eurheartj/ehr473 PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson ME (2004) Calmodulin kinase and L-type calcium channels; a recipe for arrhythmias? Trends Cardiovasc Med 14:152–161. doi: 10.1016/j.tcm.2004.02.005 PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson ME, Braun AP, Wu Y, Lu T, Wu Y, Schulman H, Sung RJ (1998) KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J Pharmacol Exp Ther 287:996–1006PubMedGoogle Scholar
  6. 6.
    Antzelevitch C (2012) Genetic, molecular and cellular mechanisms underlying the J wave syndromes. Circ J 76:1054–1065. doi: 10.1253/circj.CJ-12-0284 PubMedCrossRefGoogle Scholar
  7. 7.
    Arya A, Haghjoo M, Dehghani MR, Fazelifar AF, Nikoo MH, Bagherzadeh A, Sadr-Ameli MA (2006) Prevalence and predictors of electrical storm in patients with implantable cardioverter-defibrillator. Am J Cardiol 97:389–392. doi: 10.1016/j.amjcard.2005.08.058 PubMedCrossRefGoogle Scholar
  8. 8.
    Benitah JP, Alvarez JL, Gomez AM (2010) L-type Ca2+ current in ventricular cardiomyocytes. J Mol Cell Cardiol 48:26–36. doi: 10.1016/j.yjmcc.2009.07.026 PubMedCrossRefGoogle Scholar
  9. 9.
    Benito B, Guasch E, Rivard L, Nattel S (2010) Clinical and mechanistic issues in early repolarization of normal variants and lethal arrhythmia syndromes. J Am Coll Cardiol 56:1177–1186. doi: 10.1016/j.jacc.2010.05.037 PubMedCrossRefGoogle Scholar
  10. 10.
    Bernard A, Genee O, Grimard C, Sacher F, Fauchier L, Babuty D (2009) Electrical storm reversible by isoproterenol infusion in a striking case of early repolarization. J Interv Card Electrophysiol 25:123–127. doi: 10.1007/s10840-008-9348-5 PubMedCrossRefGoogle Scholar
  11. 11.
    Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49. doi: 10.1146/annurev.physiol.70.113006.100455 PubMedCrossRefGoogle Scholar
  12. 12.
    Bers DM, Herren AW (2012) Na+ channel I-II loop mediates parallel genetic and phosphorylation-dependent gating changes. Circulation 126:2042–2046. doi: 10.1161/CIRCULATIONAHA.112.140384 PubMedCrossRefGoogle Scholar
  13. 13.
    Boontje NM, Merkus D, Zaremba R, Versteilen A, de Waard MC, Mearini G, de Beer VJ, Carrier L, Walker LA, Niessen HW, Dobrev D, Stienen GJ, Duncker DJ, van der Velden J (2011) Enhanced myofilament responsiveness upon beta-adrenergic stimulation in post-infarct remodeled myocardium. J Mol Cell Cardiol 50:487–499. doi: 10.1016/j.yjmcc.2010.12.002 PubMedCrossRefGoogle Scholar
  14. 14.
    Brandmayr J, Poomvanicha M, Domes K, Ding J, Blaich A, Wegener JW, Moosmang S, Hofmann F (2012) Deletion of the C-terminal phosphorylation sites in the cardiac beta-subunit does not affect the basic beta-adrenergic response of the heart and the Cav1.2 channel. J Biol Chem 287:22584–22592. doi: 10.1074/jbc.M112.366484 PubMedCrossRefGoogle Scholar
  15. 15.
    Carbucicchio C, Santamaria M, Trevisi N, Maccabelli G, Giraldi F, Fassini G, Riva S, Moltrasio M, Cireddu M, Veglia F, Della Bella P (2008) Catheter ablation for the treatment of electrical storm in patients with implantable cardioverter-defibrillators: short- and long-term outcomes in a prospective single-center study. Circulation 117:462–469. doi: 10.1161/CIRCULATIONAHA.106.686534 PubMedCrossRefGoogle Scholar
  16. 16.
    Cevik C, Perez-Verdia A, Nugent K (2009) Implantable cardioverter defibrillators and their role in heart failure progression. Europace 11:710–715. doi: 10.1093/europace/eup091 PubMedCrossRefGoogle Scholar
  17. 17.
    Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Muller FU, Schmitz W, Schotten U, Anderson ME, Valderrabano M, Dobrev D, Wehrens XH (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951. doi: 10.1172/JCI37059 PubMedGoogle Scholar
  18. 18.
    Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ, Chen Z, Shen C, Rubart-von der Lohe M, Lopshire JC, Ogawa M, Weiss JN, Lin SF, Ai T, Chen PS (2011) Small-conductance calcium-activated potassium channel and recurrent ventricular fibrillation in failing rabbit ventricles. Circ Res 108:971–979. doi: 10.1161/CIRCRESAHA.110.238386 PubMedCrossRefGoogle Scholar
  19. 19.
    Chung MK, Pogwizd SM, Miller DP, Cain ME (1997) Three-dimensional mapping of the initiation of nonsustained ventricular tachycardia in the human heart. Circulation 95:2517–2527. doi: 10.1161/01.cir.95.11.2517 PubMedCrossRefGoogle Scholar
  20. 20.
    Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20. doi: 10.1016/j.eupc.2005.05.011 PubMedCrossRefGoogle Scholar
  21. 21.
    Crotti L, Monti MC, Insolia R, Peljto A, Goosen A, Brink PA, Greenberg DA, Schwartz PJ, George AL Jr (2009) NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120:1657–1663. doi: 10.1161/CIRCULATIONAHA.109.879643 PubMedCrossRefGoogle Scholar
  22. 22.
    Cutler MJ, Wan X, Laurita KR, Hajjar RJ, Rosenbaum DS (2009) Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circ Arrhythm Electrophysiol 2:686–694. doi: 10.1161/CIRCEP.109.863118 PubMedCrossRefGoogle Scholar
  23. 23.
    Diness JG, Sorensen US, Nissen JD, Al-Shahib B, Jespersen T, Grunnet M, Hansen RS (2010) Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circ Arrhythm Electrophysiol 3:380–390. doi: 10.1161/CIRCEP.110.957407 PubMedCrossRefGoogle Scholar
  24. 24.
    Dobrev D, Carlsson L, Nattel S (2012) Novel molecular targets for atrial fibrillation therapy. Nat Rev Drug Discov 11:275–291. doi: 10.1038/nrd3682 PubMedCrossRefGoogle Scholar
  25. 25.
    Dobrev D, Milde AS, Andreas K, Ravens U (1999) The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum. Br J Pharmacol 127:576–582. doi: 10.1038/sj.bjp.0702574 PubMedCrossRefGoogle Scholar
  26. 26.
    Doi M, Yano M, Kobayashi S, Kohno M, Tokuhisa T, Okuda S, Suetsugu M, Hisamatsu Y, Ohkusa T, Kohno M, Matsuzaki M (2002) Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 105:1374–1379. doi: 10.1161/hc1102.105270 PubMedCrossRefGoogle Scholar
  27. 27.
    Eifling M, Razavi M, Massumi A (2011) The evaluation and management of electrical storm. Tex Heart Inst J 38:111–121PubMedGoogle Scholar
  28. 28.
    Exner DV, Pinski SL, Wyse DG, Renfroe EG, Follmann D, Gold M, Beckman KJ, Coromilas J, Lancaster S, Hallstrom AP, Defibrillators AIAVI (2001) Electrical storm presages nonsudden death: the antiarrhythmics versus implantable defibrillators (AVID) trial. Circulation 103:2066–2071. doi: 10.1161/01.CIR.103.16.2066 PubMedCrossRefGoogle Scholar
  29. 29.
    Fagundes A, DE Magalhaes LP, Russo M, Xavier E (2010) Pharmacological treatment of electrical storm in cathecolaminergic polymorphic ventricular tachycardia. Pacing Clin Electrophysiol 33:e27–e31. doi: 10.1111/j.1540-8159.2009.02586.x PubMedCrossRefGoogle Scholar
  30. 30.
    Gao D, Sapp JL (2013) Electrical storm: definitions, clinical importance, and treatment. Curr Opin Cardiol 28:72–79. doi: 10.1097/HCO.0b013e32835b59db PubMedCrossRefGoogle Scholar
  31. 31.
    Gao Z, Rasmussen TP, Li Y, Kutschke W, Koval OM, Wu Y, Hall DD, Joiner ML, Wu X, Dominic Swaminathan P, Purohit A, Zimmerman KA, Weiss RM, Philipson K, Song LS, Hund TJ, Anderson ME (2012) Genetic inhibition of Na+-Ca2+ exchanger current disables fight or flight sinoatrial node activity without affecting resting heart rate. Circ Res doi: 10.1161/CIRCRESAHA.111.300193
  32. 32.
    Goldberger JJ, Subacius H, Schaechter A, Howard A, Berger R, Shalaby A, Levine J, Kadish AH, Investigators D (2006) Effects of statin therapy on arrhythmic events and survival in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol 48:1228–1233. doi: 10.1016/j.jacc.2006.05.053 PubMedCrossRefGoogle Scholar
  33. 33.
    Goldberger Z, Lampert R (2006) Implantable cardioverter-defibrillators: expanding indications and technologies. JAMA 295:809–818. doi: 10.1001/jama.295.7.809 PubMedCrossRefGoogle Scholar
  34. 34.
    Grimm M, Brown JH (2010) Beta-adrenergic receptor signaling in the heart: role of CaMKII. J Mol Cell Cardiol 48:322–330. doi: 10.1016/j.yjmcc.2009.10.016 PubMedCrossRefGoogle Scholar
  35. 35.
    Haissaguerre M, Derval N, Sacher F, Jesel L, Deisenhofer I, de Roy L, Pasquie JL, Nogami A, Babuty D, Yli-Mayry S, De Chillou C, Scanu P, Mabo P, Matsuo S, Probst V, Le Scouarnec S, Defaye P, Schlaepfer J, Rostock T, Lacroix D, Lamaison D, Lavergne T, Aizawa Y, Englund A, Anselme F, O’Neill M, Hocini M, Lim KT, Knecht S, Veenhuyzen GD, Bordachar P, Chauvin M, Jais P, Coureau G, Chene G, Klein GJ, Clementy J (2008) Sudden cardiac arrest associated with early repolarization. N Engl J Med 358:2016–2023. doi: 10.1056/NEJMoa071968 PubMedCrossRefGoogle Scholar
  36. 36.
    Haissaguerre M, Sacher F, Nogami A, Komiya N, Bernard A, Probst V, Yli-Mayry S, Defaye P, Aizawa Y, Frank R, Mantovan R, Cappato R, Wolpert C, Leenhardt A, de Roy L, Heidbuchel H, Deisenhofer I, Arentz T, Pasquie JL, Weerasooriya R, Hocini M, Jais P, Derval N, Bordachar P, Clementy J (2009) Characteristics of recurrent ventricular fibrillation associated with inferolateral early repolarization role of drug therapy. J Am Coll Cardiol 53:612–619. doi: 10.1016/j.jacc.2008.10.044 PubMedCrossRefGoogle Scholar
  37. 37.
    Harmati G, Banyasz T, Barandi L, Szentandrassy N, Horvath B, Szabo G, Szentmiklosi JA, Szenasi G, Nanasi PP, Magyar J (2011) Effects of beta-adrenoceptor stimulation on delayed rectifier K+ currents in canine ventricular cardiomyocytes. Br J Pharmacol 162:890–896. doi: 10.1111/j.1476-5381.2010.01092.x PubMedCrossRefGoogle Scholar
  38. 38.
    Haverkamp W (2006) Electrical storm: still a cryptogenic phenomenon? Eur Heart J 27:2921–2922. doi: 10.1093/eurheartj/ehl396 PubMedCrossRefGoogle Scholar
  39. 39.
    Heijman J, Volders PG, Westra RL, Rudy Y (2011) Local control of β-adrenergic stimulation: effects on ventricular myocyte electrophysiology and Ca2+-transient. J Mol Cell Cardiol 50:863–871. doi: 10.1016/j.yjmcc.2011.02.007 PubMedCrossRefGoogle Scholar
  40. 40.
    Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53:8–15PubMedCrossRefGoogle Scholar
  41. 41.
    Hohnloser SH, Al-Khalidi HR, Pratt CM, Brum JM, Tatla DS, Tchou P, Dorian P, SHIELD investigators (2006) Electrical storm in patients with an implantable defibrillator: incidence, features, and preventive therapy: insights from a randomized trial. Eur Heart J 27:3027–3032. doi: 10.1093/eurheartj/ehl276 PubMedCrossRefGoogle Scholar
  42. 42.
    Honjo H, Boyett MR, Niwa R, Inada S, Yamamoto M, Mitsui K, Horiuchi T, Shibata N, Kamiya K, Kodama I (2003) Pacing-induced spontaneous activity in myocardial sleeves of pulmonary veins after treatment with ryanodine. Circulation 107:1937–1943. doi: 10.1161/01.CIR.0000062645.38670.BD PubMedCrossRefGoogle Scholar
  43. 43.
    Huang DT, Traub D (2008) Recurrent ventricular arrhythmia storms in the age of implantable cardioverter defibrillator therapy: a comprehensive review. Prog Cardiovasc Dis 51:229–236. doi: 10.1016/j.pcad.2008.07.003 PubMedCrossRefGoogle Scholar
  44. 44.
    Hwang GS, Hayashi H, Tang L, Ogawa M, Hernandez H, Tan AY, Li H, Karagueuzian HS, Weiss JN, Lin SF, Chen PS (2006) Intracellular calcium and vulnerability to fibrillation and defibrillation in Langendorff-perfused rabbit ventricles. Circulation 114:2595–2603. doi: 10.1161/CIRCULATIONAHA.106.630509 PubMedCrossRefGoogle Scholar
  45. 45.
    Hwang HS, Hasdemir C, Laver D, Mehra D, Turhan K, Faggioni M, Yin H, Knollmann BC (2011) Inhibition of cardiac Ca2+ release channels (RyR2) determines efficacy of class I antiarrhythmic drugs in catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 4:128–135. doi: 10.1161/CIRCEP.110.959916 PubMedCrossRefGoogle Scholar
  46. 46.
    Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049–1169PubMedGoogle Scholar
  47. 47.
    Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, Lu Y, Eapen BL, Sharma N, Ficker E, Cutler MJ, Gulick J, Sanbe A, Robbins J, Demolombe S, Kondratov RV, Shea SA, Albrecht U, Wehrens XH, Rosenbaum DS, Jain MK (2012) Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483:96–99. doi: 10.1038/nature10852 PubMedCrossRefGoogle Scholar
  48. 48.
    Johnson DM, Heijman J, Bode EF, Greensmith DJ, van der Linde H, Abi-Gerges N, Eisner D, Trafford AW, Volders PG (2013) Diastolic spontaneous calcium release from the sarcoplasmic reticulum increases beat-to-beat variability of repolarization in canine ventricular myocytes after β-adrenergic stimulation. Circ Res 112:246–256. doi: 10.1161/CIRCRESAHA.112.275735 PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson DM, Heijman J, Pollard CE, Valentin JP, Crijns HJ, Abi-Gerges N, Volders PGA (2010) IKs restricts excessive beat-to-beat variability of repolarization during beta-adrenergic receptor stimulation. J Mol Cell Cardiol 48:122–130. doi: 10.1016/j.yjmcc.2009.08.033 PubMedCrossRefGoogle Scholar
  50. 50.
    Kang G, Giovannone SF, Liu N, Liu FY, Zhang J, Priori SG, Fishman GI (2010) Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. Circ Res 107:512–519. doi: 10.1161/CIRCRESAHA.110.221481 PubMedCrossRefGoogle Scholar
  51. 51.
    Khoo MS, Li J, Singh MV, Yang Y, Kannankeril P, Wu Y, Grueter CE, Guan X, Oddis CV, Zhang R, Mendes L, Ni G, Madu EC, Yang J, Bass M, Gomez RJ, Wadzinski BE, Olson EN, Colbran RJ, Anderson ME (2006) Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation 114:1352–1359. doi: 10.1161/CIRCULATIONAHA.106.644583 PubMedCrossRefGoogle Scholar
  52. 52.
    Kinoshita H, Kuwahara K, Takano M, Arai Y, Kuwabara Y, Yasuno S, Nakagawa Y, Nakanishi M, Harada M, Fujiwara M, Murakami M, Ueshima K, Nakao K (2009) T-type Ca2+ channel blockade prevents sudden death in mice with heart failure. Circulation 120:743–752. doi: 10.1161/CIRCULATIONAHA.109.857011 PubMedCrossRefGoogle Scholar
  53. 53.
    Kobayashi S, Bannister ML, Gangopadhyay JP, Hamada T, Parness J, Ikemoto N (2005) Dantrolene stabilizes domain interactions within the ryanodine receptor. J Biol Chem 280:6580–6587. doi: 10.1074/jbc.M408375200 PubMedCrossRefGoogle Scholar
  54. 54.
    Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Matsuzaki M (2009) Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 53:1993–2005. doi: 10.1016/j.jacc.2009.01.065 PubMedCrossRefGoogle Scholar
  55. 55.
    Kobayashi S, Yano M, Uchinoumi H, Suetomi T, Susa T, Ono M, Xu X, Tateishi H, Oda T, Okuda S, Doi M, Yamamoto T, Matsuzaki M (2010) Dantrolene, a therapeutic agent for malignant hyperthermia, inhibits catecholaminergic polymorphic ventricular tachycardia in a RyR2R2474S/+ knock-in mouse model. Circ J 74:2579–2584. doi: 10.1253/circj.CJ-10-0680 PubMedCrossRefGoogle Scholar
  56. 56.
    Koval OM, Snyder JS, Wolf RM, Pavlovicz RE, Glynn P, Curran J, Leymaster ND, Dun W, Wright PJ, Cardona N, Qian L, Mitchell CC, Boyden PA, Binkley PF, Li CL, Anderson ME, Mohler PJ, Hund TJ (2012) Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease. Circulation 126:2084–2094. doi: 10.1161/CIRCULATIONAHA.112.105320 PubMedCrossRefGoogle Scholar
  57. 57.
    Lakatta EG, DiFrancesco D (2009) What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol 47:157–170. doi: 10.1016/j.yjmcc.2009.03.022 PubMedCrossRefGoogle Scholar
  58. 58.
    Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118:2230–2245. doi: 10.1172/JCI35346 PubMedGoogle Scholar
  59. 59.
    Li N, Wang T, Wang W, Cutler MJ, Wang Q, Voigt N, Rosenbaum DS, Dobrev D, Wehrens XH (2012) Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ Res 110:465–470. doi: 10.1161/CIRCRESAHA.111.253229 PubMedCrossRefGoogle Scholar
  60. 60.
    Liu N, Ruan Y, Denegri M, Bachetti T, Li Y, Colombi B, Napolitano C, Coetzee WA, Priori SG (2011) Calmodulin kinase II inhibition prevents arrhythmias in RyR2 (R4496C+/−) mice with catecholaminergic polymorphic ventricular tachycardia. J Mol Cell Cardiol 50:214–222. doi: 10.1016/j.yjmcc.2010.10.001 PubMedCrossRefGoogle Scholar
  61. 61.
    Lunati M, Gasparini M, Bocchiardo M, Curnis A, Landolina M, Carboni A, Luzzi G, Zanotto G, Ravazzi P, Magenta G, Denaro A, Distefano P, Grammatico A, InSync ICDIRI (2006) Clustering of ventricular tachyarrhythmias in heart failure patients implanted with a biventricular cardioverter defibrillator. J Cardiovasc Electrophysiol 17:1299–1306. doi: 10.1111/j.1540-8167.2006.00618.x PubMedCrossRefGoogle Scholar
  62. 62.
    Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, O’Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, Harding SE (2011) SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol 4:362–372. doi: 10.1161/CIRCEP.110.961615 PubMedCrossRefGoogle Scholar
  63. 63.
    Marquez MF, Bonny A, Hernandez-Castillo E, De Sisti A, Gomez-Flores J, Nava S, Hidden-Lucet F, Iturralde P, Cardenas M, Tonet J (2012) Long-term efficacy of low doses of quinidine on malignant arrhythmias in Brugada syndrome with an implantable cardioverter-defibrillator: a case series and literature review. Heart Rhythm 9:1995–2000. doi: 10.1016/j.hrthm.2012.08.027 PubMedCrossRefGoogle Scholar
  64. 64.
    Maruyama M, Joung B, Tang L, Shinohara T, On YK, Han S, Choi EK, Kim DH, Shen MJ, Weiss JN, Lin SF, Chen PS (2010) Diastolic intracellular calcium-membrane voltage coupling gain and postshock arrhythmias: role of purkinje fibers and triggered activity. Circ Res 106:399–408. doi: 10.1161/CIRCRESAHA.109.211292 PubMedCrossRefGoogle Scholar
  65. 65.
    Maury P, Hocini M, Haissaguerre M (2005) Electrical storms in Brugada syndrome: review of pharmacologic and ablative therapeutic options. Indian Pacing Electrophysiol J 5:25–34PubMedGoogle Scholar
  66. 66.
    Mazur A, Roden DM, Anderson ME (1999) Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents torsade de pointes in rabbits. Circulation 100:2437–2442. doi: 10.1161/01.cir.100.24.2437 PubMedCrossRefGoogle Scholar
  67. 67.
    Miake J, Marban E, Nuss HB (2002) Biological pacemaker created by gene transfer. Nature 419:132–133. doi: 10.1038/419132b PubMedCrossRefGoogle Scholar
  68. 68.
    Michael G, Xiao L, Qi XY, Dobrev D, Nattel S (2009) Remodelling of cardiac repolarization: how homeostatic responses can lead to arrhythmogenesis. Cardiovasc Res 81:491–499. doi: 10.1093/cvr/cvn266 PubMedCrossRefGoogle Scholar
  69. 69.
    Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101:755–758. doi: 10.1161/CIRCRESAHA.107.160549 PubMedGoogle Scholar
  70. 70.
    Miyazaki T, Mitamura H, Miyoshi S, Soejima K, Aizawa Y, Ogawa S (1996) Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol 27:1061–1070. doi: 10.1016/0735-1097(95)00613-3 PubMedCrossRefGoogle Scholar
  71. 71.
    Mizusawa Y, Wilde AA (2012) Brugada syndrome. Circ Arrhythm Electrophysiol 5:606–616. doi: 10.1161/CIRCEP.111.964577 PubMedCrossRefGoogle Scholar
  72. 72.
    Morita N, Lee JH, Xie Y, Sovari A, Qu Z, Weiss JN, Karagueuzian HS (2011) Suppression of re-entrant and multifocal ventricular fibrillation by the late sodium current blocker ranolazine. J Am Coll Cardiol 57:366–375. doi: 10.1016/j.jacc.2010.07.045 PubMedCrossRefGoogle Scholar
  73. 73.
    Moss AJ (2012) Sex hormones and ventricular tachyarrhythmias in LQTS: new insights regarding antiarrhythmic therapy. Heart Rhythm 9:833–834. doi: 10.1016/j.hrthm.2012.01.014 PubMedCrossRefGoogle Scholar
  74. 74.
    Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I, Stone PH (1987) Circadian variation in the frequency of sudden cardiac death. Circulation 75:131–138. doi: 10.1161/01.cir.75.1.131 PubMedCrossRefGoogle Scholar
  75. 75.
    Nam GB, Kim YH, Antzelevitch C (2008) Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med 358:2078–2079. doi: 10.1056/NEJMc0708182 PubMedCrossRefGoogle Scholar
  76. 76.
    Nam GB, Ko KH, Kim J, Park KM, Rhee KS, Choi KJ, Kim YH, Antzelevitch C (2010) Mode of onset of ventricular fibrillation in patients with early repolarization pattern vs Brugada syndrome. Eur Heart J 31:330–339. doi: 10.1093/eurheartj/ehp423 PubMedCrossRefGoogle Scholar
  77. 77.
    Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456. doi: 10.1152/physrev.00014.2006 PubMedCrossRefGoogle Scholar
  78. 78.
    Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253. doi: 10.1152/physrev.00002.2005 PubMedCrossRefGoogle Scholar
  79. 79.
    Nogami A (2011) Purkinje-related arrhythmias part ii: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing Clin Electrophysiol 34:1034–1049. doi: 10.1111/j.1540-8159.2011.03145.x PubMedCrossRefGoogle Scholar
  80. 80.
    Nordbeck P, Seidl B, Fey B, Bauer WR, Ritter O (2010) Effect of cardiac resynchronization therapy on the incidence of electrical storm. Int J Cardiol 143:330–336. doi: 10.1016/j.ijcard.2009.03.055 PubMedCrossRefGoogle Scholar
  81. 81.
    Odening KE, Choi BR, Liu GX, Hartmann K, Ziv O, Chaves L, Schofield L, Centracchio J, Zehender M, Peng X, Brunner M, Koren G (2012) Estradiol promotes sudden cardiac death in transgenic long QT type 2 rabbits while progesterone is protective. Heart Rhythm 9:823–832. doi: 10.1016/j.hrthm.2012.01.009 PubMedCrossRefGoogle Scholar
  82. 82.
    Ogawa M, Morita N, Tang L, Karagueuzian HS, Weiss JN, Lin SF, Chen PS (2009) Mechanisms of recurrent ventricular fibrillation in a rabbit model of pacing-induced heart failure. Heart Rhythm 6:784–792. doi: 10.1016/j.hrthm.2009.02.017 PubMedCrossRefGoogle Scholar
  83. 83.
    Ohgo T, Okamura H, Noda T, Satomi K, Suyama K, Kurita T, Aihara N, Kamakura S, Ohe T, Shimizu W (2007) Acute and chronic management in patients with Brugada syndrome associated with electrical storm of ventricular fibrillation. Heart Rhythm 4:695–700. doi: 10.1016/j.hrthm.2007.02.014 PubMedCrossRefGoogle Scholar
  84. 84.
    Okuda S, Yano M, Doi M, Oda T, Tokuhisa T, Kohno M, Kobayashi S, Yamamoto T, Ohkusa T, Matsuzaki M (2004) Valsartan restores sarcoplasmic reticulum function with no appreciable effect on resting cardiac function in pacing-induced heart failure. Circulation 109:911–919. doi: 10.1161/01.CIR.0000115526.92541.D2 PubMedCrossRefGoogle Scholar
  85. 85.
    Parikh A, Mantravadi R, Kozhevnikov D, Roche MA, Ye Y, Owen LJ, Puglisi JL, Abramson JJ, Salama G (2012) Ranolazine stabilizes cardiac ryanodine receptors: a novel mechanism for the suppression of early afterdepolarization and torsades de pointes in long QT type 2. Heart Rhythm 9:953–960. doi: 10.1016/j.hrthm.2012.01.010 PubMedCrossRefGoogle Scholar
  86. 86.
    Pogwizd SM (1994) Focal mechanisms underlying ventricular tachycardia during prolonged ischemic cardiomyopathy. Circulation 90:1441–1458. doi: 10.1161/01.cir.90.3.1441 PubMedCrossRefGoogle Scholar
  87. 87.
    Pogwizd SM (1995) Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits. Circulation 92:1034–1048. doi: 10.1161/01.cir.92.4.1034 PubMedCrossRefGoogle Scholar
  88. 88.
    Priori SG, Chen SR (2011) Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res 108:871–883. doi: 10.1161/CIRCRESAHA.110.226845 PubMedCrossRefGoogle Scholar
  89. 89.
    Qi X, Yeh YH, Chartier D, Xiao L, Tsuji Y, Brundel BJ, Kodama I, Nattel S (2009) The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome. Circ Arrhythm Electrophysiol 2:295–304. doi: 10.1161/CIRCEP.108.815654 PubMedCrossRefGoogle Scholar
  90. 90.
    Reiken S, Gaburjakova M, Gaburjakova J, He Kl KL, Prieto A, Becker E, Yi Gh GH, Wang J, Burkhoff D, Marks AR (2001) beta-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 104:2843–2848. doi: 10.1161/hc4701.099578 PubMedCrossRefGoogle Scholar
  91. 91.
    Rokita AG, Anderson ME (2012) New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation 126:2125–2139. doi: 10.1161/CIRCULATIONAHA.112.124990 PubMedCrossRefGoogle Scholar
  92. 92.
    Rosen MR (1988) Mechanisms for arrhythmias. Am J Cardiol 61:2A–8APubMedCrossRefGoogle Scholar
  93. 93.
    Rubart M, Zipes DP (2005) Mechanisms of sudden cardiac death. J Clin Invest 115:2305–2315. doi: 10.1172/JCI26381 PubMedCrossRefGoogle Scholar
  94. 94.
    Schwartz PJ, Crotti L, Insolia R (2012) Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 5:868–877. doi: 10.1161/CIRCEP.111.962019 PubMedCrossRefGoogle Scholar
  95. 95.
    Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, Bloise R, De Ferrari GM, Klersy C, Moss AJ, Zareba W, Robinson JL, Hall WJ, Brink PA, Toivonen L, Epstein AE, Li C, Hu D (2004) Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109:1826–1833. doi: 10.1161/01.CIR.0000125523.14403.1E PubMedCrossRefGoogle Scholar
  96. 96.
    Schwartz PJ, Spazzolini C, Priori SG, Crotti L, Vicentini A, Landolina M, Gasparini M, Wilde AA, Knops RE, Denjoy I, Toivonen L, Monnig G, Al-Fayyadh M, Jordaens L, Borggrefe M, Holmgren C, Brugada P, De Roy L, Hohnloser SH, Brink PA (2010) Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 122:1272–1282. doi: 10.1161/CIRCULATIONAHA.110.950147 PubMedCrossRefGoogle Scholar
  97. 97.
    Schwartz PJ, Vanoli E, Crotti L, Spazzolini C, Ferrandi C, Goosen A, Hedley P, Heradien M, Bacchini S, Turco A, La Rovere MT, Bartoli A, George AL Jr, Brink PA (2008) Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome. J Am Coll Cardiol 51:920–929. doi: 10.1016/j.jacc.2007.09.069 PubMedCrossRefGoogle Scholar
  98. 98.
    Sesselberg HW, Moss AJ, McNitt S, Zareba W, Daubert JP, Andrews ML, Hall WJ, McClinitic B, Huang DT, Group M-IR (2007) Ventricular arrhythmia storms in postinfarction patients with implantable defibrillators for primary prevention indications: a MADIT-II substudy. Heart Rhythm 4:1395–1402. doi: 10.1016/j.hrthm.2007.07.013 PubMedCrossRefGoogle Scholar
  99. 99.
    Shimizu W, Noda T, Satomi K, Suyama K, Kurita T, Aihara N, Horie M, Priori SG, Kamakura S (2005) Clinical characteristics and acute therapy for electrical storm of torsade de pointes in genotyped patients with congenital long QT syndrome. Circulation 112:II-493[abstract]Google Scholar
  100. 100.
    Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittkopper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107:1150–1161. doi: 10.1161/CIRCRESAHA.110.220418 PubMedCrossRefGoogle Scholar
  101. 101.
    Streitner F, Kuschyk J, Veltmann C, Mahl E, Dietrich C, Schimpf R, Doesch C, Streitner I, Wolpert C, Borggrefe M (2011) Predictors of electrical storm recurrences in patients with implantable cardioverter-defibrillators. Europace 13:668–674. doi: 10.1093/europace/euq428 PubMedCrossRefGoogle Scholar
  102. 102.
    Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110:1661–1677. doi: 10.1161/CIRCRESAHA.111.243956 PubMedCrossRefGoogle Scholar
  103. 103.
    Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, Gao Z, He BJ, Luczak ED, Joiner ML, Kutschke W, Yang J, Donahue JK, Weiss RM, Grumbach IM, Ogawa M, Chen PS, Efimov I, Dobrev D, Mohler PJ, Hund TJ, Anderson ME (2011) Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest 121:3277–3288. doi: 10.1172/JCI57833 PubMedCrossRefGoogle Scholar
  104. 104.
    Tang L, Joung B, Ogawa M, Chen PS, Lin SF (2012) Intracellular calcium dynamics, shortened action potential duration, and late-phase 3 early afterdepolarization in Langendorff-perfused rabbit ventricles. J Cardiovasc Electrophysiol 23:1364–1371. doi: 10.1111/j.1540-8167.2012.02400.x PubMedCrossRefGoogle Scholar
  105. 105.
    Thiel WH, Chen B, Hund TJ, Koval OM, Purohit A, Song LS, Mohler PJ, Anderson ME (2008) Proarrhythmic defects in Timothy syndrome require calmodulin kinase II. Circulation 118:2225–2234. doi: 10.1161/CIRCULATIONAHA.108.788067 PubMedCrossRefGoogle Scholar
  106. 106.
    Tomas M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A, Bellazzi R, Arking DE, Marban E, Chakravarti A, Spooner PM, Priori SG (2010) Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J Am Coll Cardiol 55:2745–2752. doi: 10.1016/j.jacc.2009.12.065 PubMedCrossRefGoogle Scholar
  107. 107.
    Tomaselli GF, Zipes DP (2004) What causes sudden death in heart failure? Circ Res 95:754–763. doi: 10.1161/01.RES.0000145047.14691.db PubMedCrossRefGoogle Scholar
  108. 108.
    Tsuji Y (2011) Electrical storm and calcium signaling: a review. J Electrocardiol 44:725–729. doi: 10.1016/j.jelectrocard.2011.07.022 PubMedCrossRefGoogle Scholar
  109. 109.
    Tsuji Y, Hojo M, Voigt N, El-Armouche A, Inden Y, Murohara T, Dobrev D, Nattel S, Kodama I, Kamiya K (2011) Ca2+-related signaling and protein phosphorylation abnormalities play central roles in a new experimental model of electrical storm. Circulation 123:2192–2203. doi: 10.1161/CIRCULATIONAHA.110.016683 PubMedCrossRefGoogle Scholar
  110. 110.
    Tsuji Y, Opthof T, Yasui K, Inden Y, Takemura H, Niwa N, Lu Z, Lee JK, Honjo H, Kamiya K, Kodama I (2002) Ionic mechanisms of acquired QT prolongation and torsades de pointes in rabbits with chronic complete atrioventricular block. Circulation 106:2012–2018. doi: 10.1161/01.cir.0000031160.86313.24 PubMedCrossRefGoogle Scholar
  111. 111.
    van der Werf C, Zwinderman AH, Wilde AA (2012) Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace 14:175–183. doi: 10.1093/europace/eur277 PubMedCrossRefGoogle Scholar
  112. 112.
    van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XH (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679. doi: 10.1161/CIRCULATIONAHA.110.982298 PubMedCrossRefGoogle Scholar
  113. 113.
    Verma A, Kilicaslan F, Marrouche NF, Minor S, Khan M, Wazni O, Burkhardt JD, Belden WA, Cummings JE, Abdul-Karim A, Saliba W, Schweikert RA, Tchou PJ, Martin DO, Natale A (2004) Prevalence, predictors, and mortality significance of the causative arrhythmia in patients with electrical storm. J Cardiovasc Electrophysiol 15:1265–1270. doi: 10.1046/j.1540-8167.2004.04352.x PubMedCrossRefGoogle Scholar
  114. 114.
    Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. doi: 10.1161/CIRCULATIONAHA.111.067306 PubMedCrossRefGoogle Scholar
  115. 115.
    Volders PGA, Kulcsar A, Vos MA, Sipido KR, Wellens HJJ, Lazzara R, Szabo B (1997) Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res 34:348–359. doi: 10.1016/s0008-6363(96)00270-2 PubMedCrossRefGoogle Scholar
  116. 116.
    Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS (2011) Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late INa augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565. doi: 10.1161/CIRCRESAHA.110.221911 PubMedCrossRefGoogle Scholar
  117. 117.
    Watanabe H, Nogami A, Ohkubo K, Kawata H, Hayashi Y, Ishikawa T, Makiyama T, Nagao S, Yagihara N, Takehara N, Kawamura Y, Sato A, Okamura K, Hosaka Y, Sato M, Fukae S, Chinushi M, Oda H, Okabe M, Kimura A, Maemura K, Watanabe I, Kamakura S, Horie M, Aizawa Y, Shimizu W, Makita N (2012) Clinical characteristics and risk of arrhythmia recurrences in patients with idiopathic ventricular fibrillation associated with early repolarization. Int J Cardiol 159:238–240. doi: 10.1016/j.ijcard.2012.05.091 PubMedCrossRefGoogle Scholar
  118. 118.
    Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304:292–296. doi: 10.1126/science.1094301 PubMedCrossRefGoogle Scholar
  119. 119.
    Wilde AA, Postema PG, Di Diego JM, Viskin S, Morita H, Fish JM, Antzelevitch C (2010) The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol 49:543–553. doi: 10.1016/j.yjmcc.2010.07.012 PubMedCrossRefGoogle Scholar
  120. 120.
    Wittkopper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsold B, Kirchhof P, Maier LS, Hasenfuss G, Dobrev D, Eschenhagen T, El-Armouche A (2010) Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 120:617–626. doi: 10.1172/JCI40545 PubMedGoogle Scholar
  121. 121.
    Wu Y, Temple J, Zhang R, Dzhura I, Zhang W, Trimble R, Roden DM, Passier R, Olson EN, Colbran RJ, Anderson ME (2002) Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 106:1288–1293. doi: 10.1161/01.cir.0000027583.73268.e7 PubMedCrossRefGoogle Scholar
  122. 122.
    Xie LH, Chen F, Karagueuzian HS, Weiss JN (2009) Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ Res 104:79–86. doi: 10.1161/CIRCRESAHA.108.183475 PubMedCrossRefGoogle Scholar
  123. 123.
    Xie Y, Sato D, Garfinkel A, Qu Z, Weiss JN (2010) So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys J 99:1408–1415. doi: 10.1016/j.bpj.2010.06.042 PubMedCrossRefGoogle Scholar
  124. 124.
    Yang Y, Mou Y, Hu SJ, Fu M (2009) Beneficial effect of rosuvastatin on cardiac dysfunction is associated with alterations in calcium-regulatory proteins. Eur J Heart Fail 11:6–13. doi: 10.1093/eurjhf/hfn002 PubMedCrossRefGoogle Scholar
  125. 125.
    Zaugg CE, Wu ST, Barbosa V, Buser PT, Wikman-Coffelt J, Parmley WW, Lee RJ (1998) Ventricular fibrillation-induced intracellular Ca2+ overload causes failed electrical defibrillation and post-shock reinitiation of fibrillation. J Mol Cell Cardiol 30:2183–2192. doi: 10.1006/jmcc.1998.0777 PubMedCrossRefGoogle Scholar
  126. 126.
    Zhang T, Guo T, Mishra S, Dalton ND, Kranias EG, Peterson KL, Bers DM, Brown JH (2010) Phospholamban ablation rescues sarcoplasmic reticulum Ca2+ handling but exacerbates cardiac dysfunction in CaMKIIdelta(C) transgenic mice. Circ Res 106:354–362. doi: 10.1161/CIRCRESAHA.109.207423 PubMedCrossRefGoogle Scholar
  127. 127.
    Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919. doi: 10.1161/01.RES.0000069686.31472.C5 PubMedCrossRefGoogle Scholar
  128. 128.
    Zhao Z, Fefelova N, Shanmugam M, Bishara P, Babu GJ, Xie LH (2011) Angiotensin II induces afterdepolarizations via reactive oxygen species and calmodulin kinase II signaling. J Mol Cell Cardiol 50:128–136. doi: 10.1016/j.yjmcc.2010.11.001 PubMedCrossRefGoogle Scholar
  129. 129.
    Zhao Z, Wen H, Fefelova N, Allen C, Baba A, Matsuda T, Xie LH (2012) Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents? Am J Physiol Heart Circ Physiol 302:H1636–H1644. doi: 10.1152/ajpheart.00742.2011 PubMedCrossRefGoogle Scholar
  130. 130.
    Zhou Q, Xiao J, Jiang D, Wang R, Vembaiyan K, Wang A, Smith CD, Xie C, Chen W, Zhang J, Tian X, Jones PP, Zhong X, Guo A, Chen H, Zhang L, Zhu W, Yang D, Li X, Chen J, Gillis AM, Duff HJ, Cheng H, Feldman AM, Song LS, Fill M, Back TG, Chen SR (2011) Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med 17:1003–1009. doi: 10.1038/nm.2406 PubMedCrossRefGoogle Scholar
  131. 131.
    Zipes DP (2003) Mechanisms of clinical arrhythmias. J Cardiovasc Electrophysiol 14:902–912. doi: 10.1046/j.1540-8167.2003.03228.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yukiomi Tsuji
    • 1
  • Jordi Heijman
    • 1
  • Stanley Nattel
    • 2
    • 3
  • Dobromir Dobrev
    • 1
    • 4
    • 5
    Email author
  1. 1.Institute of Pharmacology, Faculty of MedicineUniversity Duisburg-EssenEssenGermany
  2. 2.Department of MedicineMontreal Heart Institute and Université de MontréalMontrealCanada
  3. 3.Department of Pharmacology and TherapeuticsMcGill UniversityMontrealCanada
  4. 4.Division of Experimental Cardiology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  5. 5.DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/MannheimMannheimGermany

Personalised recommendations