Doxorubicin induces senescence and impairs function of human cardiac progenitor cells

  • Elena Piegari
  • Antonella De AngelisEmail author
  • Donato Cappetta
  • Rosa Russo
  • Grazia Esposito
  • Sarah Costantino
  • Gallia Graiani
  • Caterina Frati
  • Lucia Prezioso
  • Liberato Berrino
  • Konrad Urbanek
  • Federico Quaini
  • Francesco Rossi
Original Contribution


The increasing population of cancer survivors faces considerable morbidity and mortality due to late effects of the antineoplastic therapy. Cardiotoxicity is a major limiting factor of therapy with doxorubicin (DOXO), the most effective anthracycline, and is characterized by a dilated cardiomyopathy that can develop even years after treatment. Studies in animals have proposed the cardiac progenitor cells (CPCs) as the cellular target responsible for DOXO-induced cardiomyopathy but the relevance of these observations to clinical settings is unknown. In this study, the analysis of the DOXO-induced cardiomyopathic human hearts showed that the majority of human CPCs (hCPCs) was senescent. In isolated hCPCs, DOXO triggered DNA damage response leading to apoptosis early after exposure, and telomere shortening and senescence at later time interval. Functional properties of hCPCs, such as migration and differentiation, were also negatively affected. Importantly, the differentiated progeny of DOXO-treated hCPCs prematurely expressed the senescence marker p16INK4a. In conclusion, DOXO exposure severely affects the population of hCPCs and permanently impairs their function. Premature senescence of hCPCs and their progeny can be responsible for the decline in the regenerative capacity of the heart and may represent the cellular basis of DOXO-induced cardiomyopathy in humans.


Cardiotoxicity Doxorubicin Cardiac progenitor cells Senescence 



This work was supported by Grants from the Italian Ministry of Education, (PRIN 2007: 2007AL2YNC_004, PRIN 2007: 2007AL2YNC_001), the Italian Ministry of Health (THEAPPL 2008) and the European Commission CORDIS(FP7-BIOSCENT, NMP-214539 2007).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

395_2013_334_MOESM1_ESM.pdf (901 kb)
Supplementary material 1 (PDF 901 kb)


  1. 1.
    Adamcová M, Potáčová A, Popelová O, Stěrba M, Mazurová Y, Aupperle H, Geršl V (2010) Cardiac remodeling and MMPs on the model of chronic daunorubicin-induced cardiomyopathy in rabbits. Physiol Res 59:831–836PubMedGoogle Scholar
  2. 2.
    Ali MK, Ewer MS, Gibbs HR, Swafford J, Graff KL (1994) Late doxorubicin-associated cardiotoxicity in children. The possible role of intercurrent viral infection. Cancer 74:182–188. doi: 10.1002/1097-0142(19940701)74:1<182:AID-CNCR2820740129>3.0.CO;2-2 PubMedCrossRefGoogle Scholar
  3. 3.
    Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM (2000) Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 60:1789–1792PubMedGoogle Scholar
  4. 4.
    Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073. doi: 10.1073/pnas.0706760104 PubMedCrossRefGoogle Scholar
  5. 5.
    Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222. doi: 10.1093/emboj/cdg417 PubMedCrossRefGoogle Scholar
  6. 6.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776. doi: 10.1016/S0092-8674(03)00687-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976. doi: 10.1016/j.biocel.2004.10.013 PubMedCrossRefGoogle Scholar
  8. 8.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857. doi: 10.1016/S0140-6736(11)61590-0 PubMedCrossRefGoogle Scholar
  9. 9.
    Buccini S, Haider KH, Ahmed RP, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107:301. doi: 10.1007/s00395-012-0301-5 PubMedCrossRefGoogle Scholar
  10. 10.
    Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbours. Cell 120:513–522. doi: 10.1016/j.cell.2005.02.003 PubMedCrossRefGoogle Scholar
  11. 11.
    Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. doi: 10.1038/nrm2233 PubMedCrossRefGoogle Scholar
  12. 12.
    Cesselli D, Beltrami AP, D’Aurizio F, Marcon P, Bergamin N, Toffoletto B, Pandolfi M, Puppato E, Marino L, Signore S, Livi U, Verardo R, Piazza S, Marchionni L, Fiorini C, Schneider C, Hosoda T, Rota M, Kajstura J, Anversa P, Beltrami CA, Leri A (2011) Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 179:349–366. doi: 10.1016/j.ajpath.2011.03.036 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen MH, Colan SD, Diller L (2011) Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circ Res 108:619–628. doi: 10.1161/CIRCRESAHA.110.224519 PubMedCrossRefGoogle Scholar
  14. 14.
    Chen QM, Liu J, Merrett JB (2000) Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 347:543–551. doi: 10.1042/0264-6021:3470543 PubMedCrossRefGoogle Scholar
  15. 15.
    Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93:604–613. doi: 10.1161/01.RES.0000093985.76901.AF PubMedCrossRefGoogle Scholar
  16. 16.
    d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198. doi: 10.1038/nature02118 PubMedCrossRefGoogle Scholar
  17. 17.
    D’Amario D, Cabral-Da-Silva MC, Zheng H, Fiorini C, Goichberg P, Steadman E, Ferreira-Martins J, Sanada F, Piccoli M, Cappetta D, D’Alessandro DA, Michler RE, Hosoda T, Anastasia L, Rota M, Leri A, Anversa P, Kajstura J (2011) Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res 108:1467–1481. doi: 10.1161/CIRCRESAHA.111.240648 PubMedCrossRefGoogle Scholar
  18. 18.
    De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, Martins-Ferreira J, Zheng H, Hosoda T, Rota M, Urbanek K, Kajstura J, Leri A, Rossi F, Anversa P (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292. doi: 10.1161/CIRCULATIONAHA.109.895771 PubMedCrossRefGoogle Scholar
  19. 19.
    Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB (2008) Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 26:3777–3784. doi: 10.1200/JCO.2007.14.9401 PubMedCrossRefGoogle Scholar
  20. 20.
    Gonzalez A, Rota M, Nurzynska D, Misao Y, Tillmanns J, Ojaimi C, Padin-Iruegas ME, Müller P, Esposito G, Bearzi C, Vitale S, Dawn B, Sanganalmath SK, Baker M, Hintze TH, Bolli R, Urbanek K, Hosoda T, Anversa P, Kajstura J, Leri A (2008) Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 102:597–606. doi: 10.1161/CIRCRESAHA.107.165464 PubMedCrossRefGoogle Scholar
  21. 21.
    Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta 1588:94–101. doi: 10.1016/S0925-4439(02)00144-8 PubMedCrossRefGoogle Scholar
  22. 22.
    Hampel B, Malisan F, Niederegger H, Testi R, Jansen-Durr P (2004) Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 39:1713–1721. doi: 10.1016/j.exger.2004.05.010 PubMedCrossRefGoogle Scholar
  23. 23.
    Heusch G (2011) SCIPIO brings new momentum to cardiac cell therapy. Lancet 378:1827–1828. doi: 10.1016/S0140-6736(11)61648-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, Gude NA, Thistlethwaite PA, Sussman MA, Gottlieb RA, Gustafsson AB (2010) Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation 121:675–683. doi: 10.1161/CIRCULATIONAHA.109.902221 PubMedCrossRefGoogle Scholar
  25. 25.
    Jang YM, Kendaiah S, Drew B, Phillips T, Selman C, Julian D, Leeuwenburgh C (2004) Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 577:483–490. doi: 10.1016/j.febslet.2004.10.053 PubMedCrossRefGoogle Scholar
  26. 26.
    Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386. doi: 10.1161/CIRCRESAHA.110.231498 PubMedCrossRefGoogle Scholar
  27. 27.
    Laurent G, Jaffrézou JP (2001) Signaling pathways activated by daunorubicin. Blood 98:913–924. doi: 10.1182/blood.V98.4.913 PubMedCrossRefGoogle Scholar
  28. 28.
    Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416. doi: 10.1152/physrev.00013.2005 PubMedCrossRefGoogle Scholar
  29. 29.
    Li Q, Guo Y, Ou Q, Chen N, Wu WJ, Yuan F, O’Brien E, Wang T, Luo L, Hunt GN, Zhu X, Bolli R (2011) Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol 106:849–864. doi: 10.1007/s00395-011-0180-1 PubMedCrossRefGoogle Scholar
  30. 30.
    Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971. doi: 10.1073/pnas.0502678102 PubMedCrossRefGoogle Scholar
  31. 31.
    Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324:808–815. doi: 10.1056/NEJM199103213241205 PubMedCrossRefGoogle Scholar
  32. 32.
    Malliaras K, Marbán E (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98:161–185. doi: 10.1093/bmb/ldr018 PubMedCrossRefGoogle Scholar
  33. 33.
    Mariotto AB, Rowland JH, Yabroff KR, Scoppa S, Hachey M, Ries L, Feuer EJ (2009) Long-term survivors of childhood cancers in the United States. Cancer Epidemiol Biomark Prev 18:1033–1040. doi: 10.1158/1055-9965.EPI-08-0988 CrossRefGoogle Scholar
  34. 34.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229. doi: 10.1124/pr.56.2.6 PubMedCrossRefGoogle Scholar
  35. 35.
    Nithipongvanitch R, Ittarat W, Cole MP, Tangpong J, Clair DK, Oberley TD (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9:1001–1008. doi: 10.1089/ars.2007.1632 PubMedCrossRefGoogle Scholar
  36. 36.
    Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 22:263–302. doi: 10.2165/00002018-200022040-00002 PubMedCrossRefGoogle Scholar
  37. 37.
    Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but not CD31 + cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61. doi: 10.1161/01.RES.0000173297.53793.fa PubMedCrossRefGoogle Scholar
  38. 38.
    Powell EM, Mars WM, Levitt P (2001) Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30:79–89. doi: 10.1016/S0896-6273(01)00264-1 PubMedCrossRefGoogle Scholar
  39. 39.
    Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979. doi: 10.1038/ncb1909 PubMedCrossRefGoogle Scholar
  40. 40.
    Rössig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S (2001) Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 21:5644–5657. doi: 10.1128/MCB.21.16.5644-5657.2001 PubMedCrossRefGoogle Scholar
  41. 41.
    Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Lüscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99:42–52. doi: 10.1161/01.RES.0000231289.63468.08 PubMedCrossRefGoogle Scholar
  42. 42.
    Rupp S, Bauer J, von Gerlach S, Fichtlscherer S, Zeiher AM, Dimmeler S, Schranz D (2012) Pressure overload leads to an increase of cardiac resident stem cells. Basic Res Cardiol 107:252. doi: 10.1007/s00395-012-0252-x PubMedCrossRefGoogle Scholar
  43. 43.
    Sanchez-Quintana D, Climent V, Garcia-Martinez V, Macias D, Hurle JM (1994) Extracellular matrix arrangement in the papillary muscles of the adult rat heart. Alterations after doxorubicin administration and experimental hypertension. Basic Res Cardiol 89:279–292PubMedGoogle Scholar
  44. 44.
    Sharpless NE (2004) Ink4a/Arf links senescence and aging. Exp Gerontol 39:1751–1759. doi: 10.1016/j.exger.2004.06.025 PubMedCrossRefGoogle Scholar
  45. 45.
    Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905. doi: 10.1056/NEJM199809243391307 PubMedCrossRefGoogle Scholar
  46. 46.
    Singal PK, Siveski-Iliskovic N, Kaul N, Sahai M (1992) Significance of adaptation mechanisms in adriamycin induced congestive heart failure. Basic Res Cardiol 87:512–518PubMedCrossRefGoogle Scholar
  47. 47.
    Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908. doi: 10.1161/CIRCULATIONAHA.106.655209 PubMedCrossRefGoogle Scholar
  48. 48.
    Spallarossa P, Altieri P, Barisione C, Passalacqua M, Aloi C, Fugazza G, Frassoni F, Podestà M, Canepa M, Ghigliotti G, Brunelli C (2010) p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE 5:e15583. doi: 10.1371/journal.pone.0015583 PubMedCrossRefGoogle Scholar
  49. 49.
    Steinherz LJ, Steinherz PG, Tan CTC, Heller G, Murphy ML (1991) Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266:1672–1677. doi: 10.1001/jama.1991.03470120074036 PubMedCrossRefGoogle Scholar
  50. 50.
    Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556. doi: 10.1016/S0960-9822(03)00542-6 PubMedCrossRefGoogle Scholar
  51. 51.
    Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352. doi: 10.1016/j.pcad.2006.10.002 PubMedCrossRefGoogle Scholar
  52. 52.
    Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94:514–524. doi: 10.1161/01.RES.0000117306.10142.50 PubMedCrossRefGoogle Scholar
  53. 53.
    Ueno M, Kakinuma Y, Yuhki K, Murakoshi N, Iemitsu M, Miyauchi T, Yamaguchi I (2006) Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J Pharmacol Sci 101:151–158. doi: 10.1254/jphs.FP0050980 PubMedCrossRefGoogle Scholar
  54. 54.
    Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673. doi: 10.1161/01.RES.0000183733.53101.11 PubMedCrossRefGoogle Scholar
  55. 55.
    Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102:8692–8697. doi: 10.1073/pnas.0500169102 PubMedCrossRefGoogle Scholar
  56. 56.
    Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A 103:9226–9231. doi: 10.1073/pnas.0600635103 PubMedCrossRefGoogle Scholar
  57. 57.
    Venkatakrishnan CD, Dunsmore K, Wong H, Roy S, Sen CK, Wani A, Zweier JL, Ilangovan G (2008) HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol 4:H1736–H1744. doi: 10.1152/ajpheart.91507.2007 CrossRefGoogle Scholar
  58. 58.
    Wang S, Song P, Zou MH (2012) Inhibition of AMP-activated protein kinase Œ ± (AMPKŒ ±) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1. J Biol Chem 287:8001–8012. doi: 10.1074/jbc.M111.315812 PubMedCrossRefGoogle Scholar
  59. 59.
    Wu J, Li J, Zhang N, Zhang C (2011) Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 106:317–324. doi: 10.1007/s00395-011-0168-x PubMedCrossRefGoogle Scholar
  60. 60.
    Yao Y, Xu X, Zhang G, Zhang Y, Qian W, Rui T (2012) Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway. Basic Res Cardiol 107:267PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang H (2007) Molecular signaling and genetic pathways of senescence: its role in tumorigenesis and aging. J Cell Physiol 210:567–574. doi: 10.1002/jcp.20919 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elena Piegari
    • 1
    • 2
  • Antonella De Angelis
    • 1
    • 2
    Email author
  • Donato Cappetta
    • 1
    • 2
  • Rosa Russo
    • 1
    • 2
  • Grazia Esposito
    • 1
    • 2
  • Sarah Costantino
    • 1
    • 2
  • Gallia Graiani
    • 3
  • Caterina Frati
    • 3
  • Lucia Prezioso
    • 3
  • Liberato Berrino
    • 1
    • 2
  • Konrad Urbanek
    • 1
    • 2
  • Federico Quaini
    • 3
  • Francesco Rossi
    • 1
    • 2
  1. 1.Department of Experimental Medicine, Section of PharmacologySecond University of NaplesNaplesItaly
  2. 2.Excellence Research Center for Cardiovascular Diseases, Department of Experimental MedicineSecond University of NaplesNaplesItaly
  3. 3.Departments of Medicine and PathologyUniversity of ParmaParmaItaly

Personalised recommendations