Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways

  • Zheng Zhang
  • Shuang Li
  • Mingliang Cui
  • Xue Gao
  • Dongdong Sun
  • Xing Qin
  • Kazim Narsinh
  • Chunhong Li
  • Hongbing Jia
  • Congye Li
  • Yaling Han
  • Haichang Wang
  • Feng Cao
Original Contribution


The poor viability of transplanted stem cells hampers their therapeutic efficacy for treatment of myocardial infarction. The aim of this study was to investigate whether rosuvastatin improved survival of adipose-derived mesenchymal stem cells (AD-MSCs) after transplantation into infarcted hearts. AD-MSCs isolated from Tg(Fluc-egfp) mice which constitutively express both firefly luciferase (Fluc) and enhanced green fluorescent protein were transplanted into infarcted hearts with or without rosuvastatin administration. Longitudinal in vivo bioluminescence imaging and histological staining revealed that rosuvastatin enhanced the survival of engrafted AD-MSCs. Furthermore, combined therapy of AD-MSC and rosuvastatin reduced fibrosis, decreased cardiomyocyte apoptosis, and preserved heart function. AD-MSCs were then subjected to hypoxia and serum deprivation injury in vitro to mimic the ischemic environment. Rosuvastatin (10−6 mmol/L) enhanced the viability and paracrine effect of AD-MSCs, and decreased their apoptotic rate. Western blotting revealed that rosuvastatin supplementation increased Akt and ERK phosphorylation, which resulted in FoxO3a phosphorylation and nuclear export. In addition, rosuvastatin administration decreased the pro-apoptotic proteins Bim and Bax, and increased the anti-apoptotic proteins Bcl-xL and Bcl-2. Furthermore, these effects were abolished by PI3K inhibitor LY294002 and MEK1/2 inhibitor U0126. This study demonstrates that rosuvastatin may improve the survival of engrafted AD-MSCs at least in part through the PI3K/Akt and MEK/ERK1/2 signaling pathways. Combination therapy with rosuvastatin and AD-MSCs has a synergetic effect on improving myocardial function after infarction.


Rosuvastatin Adipose-derived mesenchymal stem cells Myocardial infarction Phosphatidylinositol 3-kinase Extracellular signal-regulated kinase FoxO3a Apoptosis 


  1. 1.
    Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426. doi:10.1016/S0092-8674(04)00452-0 PubMedCrossRefGoogle Scholar
  2. 2.
    Ajith TA, Harikumar KB, Thasna H, Sabu MC, Babitha NV (2006) Proapoptotic and antitumor activities of the HMG-CoA reductase inhibitor, lovastatin, against Dalton’s lymphoma ascites tumor in mice. Clin Chim Acta 366:322–328. doi:10.1016/j.cca.2005.11.012 PubMedCrossRefGoogle Scholar
  3. 3.
    Arden KC (2007) FoxOs in tumor suppression and stem cell maintenance. Cell 128:235–237. doi:10.1016/j.cell.2007.01.009 PubMedCrossRefGoogle Scholar
  4. 4.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, McHenry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905. doi:10.1038/nature08822 PubMedCrossRefGoogle Scholar
  5. 5.
    Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926. doi:10.1038/415922a PubMedCrossRefGoogle Scholar
  6. 6.
    Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Komnenovic V, Scheuch H, Priemel M, Stewart CL, Amling M, Wagner EF (2008) Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature 454:221–225. doi:10.1038/nature07019 PubMedCrossRefGoogle Scholar
  7. 7.
    Buccini S, Haider KH, Ahmed RP, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107:301. doi:10.1007/s00395-012-0301-5 PubMedCrossRefGoogle Scholar
  8. 8.
    Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, March KL (2009) IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 27:230–237. doi:10.1634/stemcells.2008-0273 PubMedCrossRefGoogle Scholar
  9. 9.
    Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, Drukker M, Dylla SJ, Connolly AJ, Chen X, Weissman IL, Gambhir SS, Wu JC (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014. doi:10.1161/CIRCULATIONAHA.105.588954 PubMedCrossRefGoogle Scholar
  10. 10.
    Cao F, Sadrzadeh Rafie AH, Abilez OJ, Wang H, Blundo JT, Pruitt B, Zarins C, Wu JC (2007) In vivo imaging and evaluation of different biomatrices for improvement of stem cell survival. J Tissue Eng Regen Med 1:465–468. doi:10.1002/term.55 PubMedCrossRefGoogle Scholar
  11. 11.
    Cao F, Sun D, Li C, Narsinh K, Zhao L, Li X, Feng X, Zhang J, Duan Y, Wang J, Liu D, Wang H (2009) Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J 30:1986–1994. doi:10.1093/eurheartj/ehp220 PubMedCrossRefGoogle Scholar
  12. 12.
    Cerezo-Guisado MI, Garcia-Marin LJ, Lorenzo MJ, Bragado MJ (2005) Lovastatin inhibits the growth and survival pathway of phosphoinositide 3-kinase/protein kinase B in immortalized rat brain neuroblasts. J Neurochem 94:1277–1287. doi:10.1111/j.1471-4159.2005.03345.x PubMedCrossRefGoogle Scholar
  13. 13.
    Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ (2010) A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 107:1445–1453. doi:10.1161/CIRCRESAHA.110.223925 PubMedCrossRefGoogle Scholar
  14. 14.
    Geng YJ (2003) Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann NY Acad Sci 1010:687–697. doi:10.1196/annals.1299.126 PubMedCrossRefGoogle Scholar
  15. 15.
    Ghavami S, Mutawe MM, Hauff K, Stelmack GL, Schaafsma D, Sharma P, McNeill KD, Hynes TS, Kung SK, Unruh H, Klonisch T, Hatch GM, Los M, Halayko AJ (2010) Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. Biochim Biophys Acta 1803:452–467. doi:10.1016/j.bbamcr.2009.12.005 PubMedCrossRefGoogle Scholar
  16. 16.
    Hagenbuchner J, Kuznetsov A, Hermann M, Hausott B, Obexer P, Ausserlechner MJ (2012) FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J Cell Sci 125:1191–1203. doi:10.1242/jcs.092098 PubMedCrossRefGoogle Scholar
  17. 17.
    Hakuno D, Fukuda K, Makino S, Konishi F, Tomita Y, Manabe T, Suzuki Y, Umezawa A, Ogawa S (2002) Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation 105:380–386. doi:10.1161/hc0302.102593 PubMedCrossRefGoogle Scholar
  18. 18.
    Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, Taki W, Miyatake K, Kangawa K (2005) Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke 36:853–858. doi:10.1161/01.STR.0000157661.69482.76 PubMedCrossRefGoogle Scholar
  19. 19.
    Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, Wen J, Takeshita A (2002) Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 105:868–873. doi:10.1161/hc0702.104164 PubMedCrossRefGoogle Scholar
  20. 20.
    Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242 PubMedCrossRefGoogle Scholar
  21. 21.
    Hoke NN, Salloum FN, Loesser-Casey KE, Kukreja RC (2009) Cardiac regenerative potential of adipose tissue-derived stem cells. Acta Physiol Hung 96:251–265. doi:10.1556/APhysiol.96.2009.3.1 PubMedCrossRefGoogle Scholar
  22. 22.
    Hong MK, Lee CW, Kim YH, Park DW, Lee SW, Park CB, Jang JS, Han KH, Cheong SS, Kim JJ, Park SW, Park SJ (2006) Usefulness of follow-up low-density lipoprotein cholesterol level as an independent predictor of changes of coronary atherosclerotic plaque size as determined by intravascular ultrasound analysis after statin (atorvastatin or simvastatin) therapy. Am J Cardiol 98:866–870. doi:10.1016/j.amjcard.2006.04.025 PubMedCrossRefGoogle Scholar
  23. 23.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490. doi:10.1016/S0092-8674(00)81589-5 PubMedCrossRefGoogle Scholar
  24. 24.
    Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201. doi:10.1038/nm912 PubMedCrossRefGoogle Scholar
  25. 25.
    Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110:349–355. doi:10.1161/01.CIR.0000135466.16823.D0 PubMedCrossRefGoogle Scholar
  26. 26.
    Muller-Ehmsen J, Krausgrill B, Burst V, Schenk K, Neisen UC, Fries JW, Fleischmann BK, Hescheler J, Schwinger RH (2006) Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol 41:876–884. doi:10.1016/j.yjmcc.2006.07.023 PubMedCrossRefGoogle Scholar
  27. 27.
    Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229. doi:10.1161/01.RES.0000109792.43271.47 PubMedCrossRefGoogle Scholar
  28. 28.
    Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663. doi:10.1161/01.CIR.0000114522.38265.61 PubMedCrossRefGoogle Scholar
  29. 29.
    Plas DR, Thompson CB (2003) Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem 278:12361–12366. doi:10.1074/jbc.M213069200 PubMedCrossRefGoogle Scholar
  30. 30.
    Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298. doi:10.1161/01.CIR.0000121425.42966.F1 PubMedCrossRefGoogle Scholar
  31. 31.
    Sanganalmath SK, Abdel-Latif A, Bolli R, Xuan YT, Dawn B (2011) Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond. Basic Res Cardiol 106:709–733. doi:10.1007/s00395-011-0183-y PubMedCrossRefGoogle Scholar
  32. 32.
    Shankar S, Chen Q, Srivastava RK (2008) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 3:7. doi:10.1186/1750-2187-3-7 PubMedCrossRefGoogle Scholar
  33. 33.
    Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823. doi:10.1074/jbc.M500528200 PubMedCrossRefGoogle Scholar
  34. 34.
    Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K (2004) The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279:1513–1525. doi:10.1074/jbc.M304736200 PubMedCrossRefGoogle Scholar
  35. 35.
    Son BK, Kozaki K, Iijima K, Eto M, Kojima T, Ota H, Senda Y, Maemura K, Nakano T, Akishita M, Ouchi Y (2006) Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway. Circ Res 98:1024–1031. doi:10.1161/01.RES.0000218859.90970.8d PubMedCrossRefGoogle Scholar
  36. 36.
    Sun D, Shen M, Li J, Li W, Zhang Y, Zhao L, Zhang Z, Yuan Y, Wang H, Cao F (2011) Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3beta dependent pathway in experimental diabetic cardiomyopathy. Cardiovasc Diabetol 10:4. doi:10.1186/1475-2840-10-4 PubMedCrossRefGoogle Scholar
  37. 37.
    Tang TY, Howarth SP, Miller SR, Graves MJ, Patterson AJ, UK-I JM, Li ZY, Walsh SR, Brown AP, Kirkpatrick PJ, Warburton EA, Hayes PD, Varty K, Boyle JR, Gaunt ME, Zalewski A, Gillard JH (2009) The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53:2039–2050. doi:10.1016/j.jacc.2009.03.018 PubMedCrossRefGoogle Scholar
  38. 38.
    Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350. doi:10.1016/j.jacc.2005.05.079 PubMedCrossRefGoogle Scholar
  39. 39.
    Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441:523–527. doi:10.1038/nature04809 PubMedCrossRefGoogle Scholar
  40. 40.
    van der Bogt KE, Sheikh AY, Schrepfer S, Hoyt G, Cao F, Ransohoff KJ, Swijnenburg RJ, Pearl J, Lee A, Fischbein M, Contag CH, Robbins RC, Wu JC (2008) Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118:S121–S129. doi:10.1161/CIRCULATIONAHA.107.759480 PubMedCrossRefGoogle Scholar
  41. 41.
    van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440–450. doi:10.1038/nrm2190 PubMedCrossRefGoogle Scholar
  42. 42.
    Wei F, Wang TZ, Zhang J, Yuan ZY, Tian HY, Ni YJ, Zhuo XZ, Han K, Liu Y, Lu Q, Bai HY, Ma AQ (2012) Mesenchymal stem cells neither fully acquire the electrophysiological properties of mature cardiomyocytes nor promote ventricular arrhythmias in infarcted rats. Basic Res Cardiol 107:274. doi:10.1007/s00395-012-0274-4 PubMedCrossRefGoogle Scholar
  43. 43.
    Wiggins CM, Tsvetkov P, Johnson M, Joyce CL, Lamb CA, Bryant NJ, Komander D, Shaul Y, Cook SJ (2011) BIM(EL), an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation. J Cell Sci 124:969–977. doi:10.1242/jcs.058438 PubMedCrossRefGoogle Scholar
  44. 44.
    Wu J, Li J, Zhang N, Zhang C (2011) Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 106:317–324. doi:10.1007/s00395-011-0168-x PubMedCrossRefGoogle Scholar
  45. 45.
    Fan W, Sun D, Liu J, Liang D, Wang Y, Narsinh KH, Li Y, Qin X, Liang J, Tian J, Cao F (2012) Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study. PLoS ONE 7:e45621. doi:10.1016/j.yjmcc.2008.11.016 PubMedCrossRefGoogle Scholar
  46. 46.
    Yang YJ, Qian HY, Huang J, Geng YJ, Gao RL, Dou KF, Yang GS, Li JJ, Shen R, He ZX, Lu MJ, Zhao SH (2008) Atorvastatin treatment improves survival and effects of implanted mesenchymal stem cells in post-infarct swine hearts. Eur Heart J 29:1578–1590. doi:10.1093/eurheartj/ehn167 PubMedCrossRefGoogle Scholar
  47. 47.
    Yang YJ, Qian HY, Huang J, Li JJ, Gao RL, Dou KF, Yang GS, Willerson JT, Geng YJ (2009) Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts. Arterioscler Thromb Vasc Biol 29:2076–2082. doi:10.1161/ATVBAHA.109.189662 PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang Z, Li W, Sun D, Zhao L, Zhang R, Wang Y, Zhou X, Wang H, Cao F (2011) Toll-like receptor 4 signaling in dysfunction of cardiac microvascular endothelial cells under hypoxia/reoxygenation. Inflamm Res 60:37–45. doi:10.1007/s00011-010-0232-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zheng Zhang
    • 1
  • Shuang Li
    • 1
  • Mingliang Cui
    • 1
  • Xue Gao
    • 2
  • Dongdong Sun
    • 1
  • Xing Qin
    • 1
  • Kazim Narsinh
    • 3
  • Chunhong Li
    • 1
  • Hongbing Jia
    • 4
  • Congye Li
    • 1
  • Yaling Han
    • 5
  • Haichang Wang
    • 1
  • Feng Cao
    • 1
  1. 1.Department of Cardiology, Xijing HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Department of UltrasonographyThe Military General Hospital of Beijing PLABeijingChina
  3. 3.Department of RadiologyUC San Diego School of MedicineLa JollaUSA
  4. 4.Department of Orthopedics323 Hospital PLAXi’anChina
  5. 5.Department of CardiologyShenyang PLA General HospitalShenyangChina

Personalised recommendations