Basic Research in Cardiology

, 108:318 | Cite as

RETRACTED ARTICLE: Postconditioning promotes the cardiac repair through balancing collagen degradation and synthesis after myocardial infarction in rats

  • Zhang-Feng Wang
  • Ning-Ping Wang
  • Suzanna Harmouche
  • Tiji Philip
  • Xue-Fen Pang
  • Feng Bai
  • Zhi-Qing Zhao
Original Contribution


Postconditioning (Postcon) reduces infarct size. However, its role in modulation of cardiac repair after infarction is uncertain. This study tested the hypothesis that Postcon inhibits adverse cardiac repair by reducing degradation of extracellular matrix (ECM) and synthesis of collagens via modulating matrix metalloproteinase (MMP) activity and transforming growth factor (TGF) β1/Smad signaling pathway. Sprague–Dawley rats were subjected to 45 min ischemia followed by 3 h, 7 or 42 days of reperfusion, respectively. In acute studies, four cycles of 10/10 s Postcon significantly reduced infarct size, which was blocked by administration of a mitochondrial KATP channel blocker, 5-hydroxydecanoate (5-HD) at reperfusion. In chronic studies, Postcon inhibited MMP activity and preserved ECM from degradation as evidenced by reduced extent of collagen-rich scar and increased mass of viable myocardium. Along with a reduction in collagen synthesis and fibrosis, Postcon significantly down-regulated expression of TGFβ1 and phospho-Smad2/3, and up-regulated Smad7 as compared to the control, consistent with a reduction in the population of α-smooth muscle actin expressing myofibroblasts within the infarcted myocardium. At 42 days of reperfusion, echocardiography showed significant improvements in left ventricular end-diastolic volume and ejection fraction. The wall thickness of the infarcted middle anterior septum in the Postcon was also significantly greater than that in the control. The beneficial effects of Postcon on cardiac repair were comparable to preconditioning and still evident after a blockade with 5-HD. These data suggest that Postcon is effective to promote cardiac repair and preserve cardiac function; protection is potentially mediated by inhibiting ECM degradation and collagen synthesis.


Cardiac repair Collagen Extracellular matrix Postconditioning TGFβ1/Smad pathway 



This study was supported in part by a seed Grant from the Mercer University School of Medicine and National Natural Science Foundation of China (81170145/H0203).

Conflict of interest

No conflicts of interest were declared.


  1. 1.
    Bell RM, Yellon DM (2012) Conditioning the whole heart—not just cardiomyocyte. J Mol Cell Cardiol 53:24–32. doi: 10.1016/j.yjmcc.2012.04.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Belvisi MG, Bottomley KM (2003) The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflamm Res 52:95–100. doi: CrossRefPubMedGoogle Scholar
  3. 3.
    Berthonneche C, Sulpice T, Boucher F, Gouraud L, de Leiris J, O’Connor SE, Herbert JM, Janiak P (2004) New insights into the pathological role of TNF-a in early cardiac dysfunction and subsequent heart failure after infarction in rats. Am J Physiol (Heart Circ Physiol) 287:H340–H350. doi: 10.1152/ajpheart.01210.2003 CrossRefGoogle Scholar
  4. 4.
    Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial SATAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi: 10.1007/s00395-010-0124-1 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Ann Rev Pharmacol Toxicol 45:657–687. doi: 10.1146/annurev.pharmtox.45.120403.095802 CrossRefGoogle Scholar
  6. 6.
    Bujak M, Frangogiannis NG (2006) The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Res 74:184–195. doi: 10.1016/j.cardiores.2006.10.002 CrossRefGoogle Scholar
  7. 7.
    Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–1839. doi: 10.1161/01.CIR.101.15.1833 CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903. doi: 10.1161/CIRCULATIONAHA.106.675710 CrossRefPubMedGoogle Scholar
  9. 9.
    Dobazewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF, Frangogiannis NG (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428. doi: 10.1161/CIRCRESAHA.109.216101 CrossRefGoogle Scholar
  10. 10.
    Douhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B (2008) Myocardial postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol (Heart Circ Physiol) 295:H1508–H1586. doi: 10.1152/ajpheart.00379.2008 Google Scholar
  11. 11.
    Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Cardiovascular Res 69:15–25. doi: 10.1016/j.cardiores.2005.07.007 CrossRefGoogle Scholar
  12. 12.
    Falk V, Soccal PM, Grunenfelder J, Hoyt G, Walther T, Robbins RC (2002) Regulation of matrix metalloproteinases and effect of MMP-inhibition in heart transplant related reperfusion injury. Eur J Cardio thorac Surg 22:53–58. doi: 10.1007/s00109-004-0606-4 CrossRefGoogle Scholar
  13. 13.
    Freixa X, Bellera N, Ortiz-Perez JT, Jimenez M, Pare C, Bosch X, De Caralt TM, Betriu A, Masotti M (2012) Ischemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J 33:103–112. doi: 10.1093/eurheartj/ehr297 CrossRefPubMedGoogle Scholar
  14. 14.
    Garcia S, Henry TD, Wang YL, Chavez IJ, Pedersen WR, Lesser JR, Shroff GR, Moore L, Traverse JH (2011) Long-term follow-up of patients underlying postconditioning during ST-elevation myocardial infarction. J Cardiovasc Trans Res 4:92–98. doi: 10.1007/s12265-010-9252-0 CrossRefGoogle Scholar
  15. 15.
    Granfeldt AV-J, Jiang R, Wang NP, Mykytenko J, Eldaif S, Deneve J, Guyton RA, Zhao ZQ, Vinten-Johansen J (2012) Neutrophil inhibition contributes to cardioprotection by postconditioning. Acta Anaesthesiol Scand 56:48–56. doi: 10.1111/j.1399-6576.2011.02577.x CrossRefPubMedGoogle Scholar
  16. 16.
    Hausenloy DJ, Lecour S, Yellon DM (2011) RISK and SAFE pro-survival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907. doi: 10.1089/ars.2010.3360 CrossRefPubMedGoogle Scholar
  17. 17.
    Heinzel FR, Luo Y, Li XK, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Cir Res 97:583–586. doi: 10.1161/01.RES.0000181171.65293.65 CrossRefGoogle Scholar
  18. 18.
    Heusch G (2011) Reduction of infarct size by ischemic post-conditioning in humans: fact or fiction? Eur Heart J 33:13–15. doi: 10.1093/eurheartj/ehr341 CrossRefPubMedGoogle Scholar
  19. 19.
    Heusch G, Bu chert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356. doi: 10.1007/s00395-006-0589-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. doi: 10.1161/CIRCRESAHA.111.255604 CrossRefPubMedGoogle Scholar
  21. 21.
    Heusch G (2012) Cardioprotection: chances and challenges of its translation to the clinic. Lancet. doi:  10.1016/S0140-6736(12)60916-7
  22. 22.
    Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537. doi: 10.1038/sj.jid.5700613 CrossRefPubMedGoogle Scholar
  23. 23.
    Kleinbongard P, Heusch G, Schulz R (2010) TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Therap 127:295–314. doi: 10.1016/j.pharmthera.2010.05.002 CrossRefGoogle Scholar
  24. 24.
    Kin H, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, Zatta AJ, Guyton RA, Vinten-Johansen J, Zhao ZQ (2007) Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock 29:761–768. doi: 10.1097/SHK.0b013e31815cfd5a Google Scholar
  25. 25.
    Lonborg J, Kelbak H, Vejlstrup N, Jorgensen E, Helqvist S, Saunamaki K, Clemmensen P, Holmvang L, Treiman M, Jensen JS, Engstrom T (2010) Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc Interv 3:34–41. doi: 10.1161/CIRCINTERVENTIONS.109.905521 CrossRefPubMedGoogle Scholar
  26. 26.
    Lonborg J, Holmvang L, Kelbak H, Vejlstrup N, Jorgensen E, Helqvist S, Saunamaki K, Clemmensen P, Treiman M, Jensen JS, Engstrom T (2010) ST-segment resolution and clinical outcome with ischemic postconditioning and comparison to magnetic resonance. Am Heart J 160:1085–1091. doi: 10.1016/j.ahj.2010.09.026 CrossRefPubMedGoogle Scholar
  27. 27.
    Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, Roussel S, Schumann-Bard P, Bernaudin M (2009) Delayed postconditioning protects against cerebral ischemia in the mouse. Stroke 40:3349–3355. doi: 10.1161/STROKEAHA.109.557314 CrossRefPubMedGoogle Scholar
  28. 28.
    Lindsey ML, Mann DL, Entman ML, Spinale FG (2003) Extracellular matrix remodeling following myocardial injury. Ann Med 35:316–326. doi: 10.1080/07853890310001285 CrossRefPubMedGoogle Scholar
  29. 29.
    Longacre LS, Kloner RA, Arai AE, Baners CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heider RS, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 national heart, lung, and blood insititute workshop. Circulation 124:1172–1179. doi: 10.1161/CIRCULATIONAHA.111.032698 CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Luo W, Li B, Lin G, Huang R (2007) Postconditioning in cardiac surgery for tetralogy of Fallot. J Thorac Cardiovasc Surg 133:1373–1374. doi: 10.1016/j.jtcvs.2007.01.028 CrossRefPubMedGoogle Scholar
  31. 31.
    Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, Arai M, Misao Y, Lu C, Suzuki K, Goto K, Komada A, Takahashi T, Kosai K, Fujiwara T, Fujiwara H (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109:2572–2580. doi: 10.1161/01.CIR.0000129770.93985.3E CrossRefPubMedGoogle Scholar
  32. 32.
    Mykytenko J, Reeves JG, Kin H, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial KATP channel activation during reperfusion. Basic Res Cardiol 103:472–484. doi: 10.1007/s00395-008-0731-2 CrossRefPubMedGoogle Scholar
  33. 33.
    Okada H, Takemura G, Kosai K, Li Y, Takahashi T, Esaki M, Yuge K, Miyata S, Maruyama R, Mikami A, Minatoguchi S, Fujiwara T, Fujiwara H (2005) Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111:2430–2437. doi: 10.1161/01.CIR.0000165066.71481.8E CrossRefPubMedGoogle Scholar
  34. 34.
    Pain T, Yang X-M, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466. doi: 10.1161/01.RES.87.6.460 CrossRefPubMedGoogle Scholar
  35. 35.
    Payne TR, Oshima H, Okada M, Momoi N, Tobita K, Keller BB, Peng H, Huard J (2007) A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50:1677–1684. doi: 10.1016/j.jacc.2007.04.100 CrossRefPubMedGoogle Scholar
  36. 36.
    Penna C, Pasqua T, Perrelli MG, Pagliaro P, Cerra MC, Angelone T (2012) Postconditioning with glucagon like peptide-2 reduces ischemia-reperfusion injury in isolated rat hearts: role of survival kinases and mitochondrial KATP channels. Basic Res Cardiol 107:272–280. doi: 10.1007/s00395-012-0272-6 CrossRefPubMedGoogle Scholar
  37. 37.
    Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189. doi: 10.1007/s00395-006-0584-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Prasad A, Stone GW, Holmes DR, Gersh B, Dphil C (2009) Reperfusion injury, microvascular dysfunction, and cardioprotection: the “dark side” of reperfusion. Circulation 120:2105–2112. doi: 10.1161/CIRCULATIONAHA.108.814640 CrossRefPubMedGoogle Scholar
  39. 39.
    Przyklenk K, Maynard M, Greiner DL, Whittaker P (2011) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14:781–790. doi: 10.1089/ars.2010.3343 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Ren C, Gao XW, Niu G, Yan ZM, Chen XY, Zhao H (2008) Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS ONE 3:1–12. doi: 10.1371/journal.pone.0003851 Google Scholar
  41. 41.
    Rohde LE, Aikawa M, Cheng GC, Sukhova G, Solomon SD, Libby P, Pfeffer J, Pfeffer MA, Lee RT (1999) Echocardiography-derived left ventricular end-systolic regional wall stress and matrix remodeling after experimental myocardial infarction. J Am Coll Cardiol 33:835–842. doi: 10.1016/S0735-1097(98)00602-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Roubille F, Franck-Miclo A, Covinhes A, Lafont C, Cransac F, Combes S, Vincent A, Fontanaud P, Sportouch-Dukhan C, Redt-Clouet C, Nargeot J, Piot C, Barre’re-Lemaire S (2011) Delayed postconditioning in the mouse heart in vivo. Circulation 124:1330–1336. doi: 10.1161/CIRCULATIONAHA.111.031864 CrossRefPubMedGoogle Scholar
  43. 43.
    Sadat U, Walsh SR, Varty K (2008) Cardioprotection by ischemic postconditioning during surgical procedures. Expert Rev Cardiovasc Ther 6:999–1006. doi: 10.1586/14779072.6.7.999 CrossRefPubMedGoogle Scholar
  44. 44.
    Sandu N, Schaller B (2010) Postconditioning: a new or old option after ischemic stroke? Expert Rev 8:479–482. doi: 10.1586/erc.09.180 Google Scholar
  45. 45.
    Sorensson P, Salem N, Bouvier F, Bohm F, Settergren M, Caidahl K, Tornvall P, Arheden H, Ryden L, Pernow J (2010) Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart 96:1710–1715. doi: 10.1136/hrt.2010.199430 CrossRefPubMedGoogle Scholar
  46. 46.
    Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC (2002) Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 8:S332–S338. doi: 10.1054/jcaf.2002.129259 CrossRefPubMedGoogle Scholar
  47. 47.
    Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit J-F, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148. doi: 10.1161/CIRCULATIONAHA.105.558122 CrossRefPubMedGoogle Scholar
  48. 48.
    Sun Y (2009) Myocardial repair/remodeling following infarction: roles of local factors. Cardiovascular Res 81:482–490. doi: 10.1016/j.yjmcc.2009.08.002 CrossRefGoogle Scholar
  49. 49.
    Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2 + overload. Am J Physiol (Heart Circ Physiol) 288:H1900–H1908. doi: 10.1152/ajpheart.01244.2003 CrossRefGoogle Scholar
  50. 50.
    Tao ZY, Cavasin MA, Yang F, Liu YH, Yang XP (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74:1561–1572. doi: 10.1016/j.lfs.2003.09.042 CrossRefPubMedGoogle Scholar
  51. 51.
    Tessone A, Feinberg MS, Barbash IM, Reich R, Holbova R, Richmann M, Mardor Y, Leor J (2005) Effect of matrix metalloproteinase inhibition by doxycycline on myocardial healing and remodeling after myocardial infarction. Cardiovasc Drugs Ther 19:383–390. doi: 10.1007/s10557-005-5201-6 CrossRefPubMedGoogle Scholar
  52. 52.
    Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, Cung TT, Bonnefoy E, Angoulvant D, Aupetit JF, Finet G, Andre-Fouet X, Macia JC, Raczka F, Rossi R, Itti R, Kirkorian G, Derumeaux G, Ovize M (2008) Long-term benefit of postconditioning. Circulation 117:1037–1044. doi: 10.1161/CIRCULATIONAHA.107.729780 CrossRefPubMedGoogle Scholar
  53. 53.
    Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232. doi: 10.1161/01.RES.0000138303.76488.fe CrossRefPubMedGoogle Scholar
  54. 54.
    Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F (2005) Postconditioning—A new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol 100:295–310. doi: 10.1007/s00395-005-0523-x CrossRefPubMedGoogle Scholar
  55. 55.
    Wang B, Omara, Angelovska T, Drobic V, Rattan SG, Jones SC, Dixon IMC (2007) Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am J Physiol 293:H1282–H1290. doi: 10.1152/ajpheart.00910.2006 Google Scholar
  56. 56.
    Wei M, Xin P, Li SA, Tao JP, Li YP, Li J, Liu MY, Li JB, Zhu W, Redington AN (2011) Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Cir Res 108:1220–1225. doi: 10.1161/CIRCRESAHA.110.236190 CrossRefGoogle Scholar
  57. 57.
    Yang XC, Liu Y, Wang LF, Cui L, Wang T, Ge YG, Wang HS, Li WM, Xu L, Ni ZH, Liu SH, Zhang L, Jia HM, Vinten-Johansen J, Zhao ZQ (2007) Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J Invasive Cardiol 19:424–430PubMedGoogle Scholar
  58. 58.
    Yuan SM, Jing H (2010) Cardiac pathologies in relation to Smad-dependent pathways. Interact Cardiovasc Thorac Surg 11:455–460. doi: 10.1510/icvts.2010.234773 CrossRefPubMedGoogle Scholar
  59. 59.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol (Heart Circ Physiol) 285:H579–H588. doi: 10.1152/ajpheart.01064.2002 Google Scholar
  60. 60.
    Zhao ZQ, Nakamura M, Wang N-P, Velez DA, Hewan-Lowe KO, Guyton RA, Vinten-Johansen J (2000) Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res 94:1–12. doi: 10.1006/jsre.2000.6029 CrossRefGoogle Scholar
  61. 61.
    Zhao ZQ, Puskas JD, Xu D, Wang N-P, Guyton RA, Vinten-Johansen J, Matheny R (2008) Improvement in cardiac function with small intestine extracellular matrix is associated with recruitment of c-kit cells, myofibroblasts, and macrophages after myocardial infarction. J Am Coll Cardiol 55:1250–1261. doi: 10.1016/j.jacc.2009.10.049 CrossRefGoogle Scholar
  62. 62.
    Zhou C, Li L (2012) Age may contribute to the negative cardiac effect of postconditioning on STEMI patients. Int J Cardiol. doi:  10.1016/j.ijcard.2012.09.174

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhang-Feng Wang
    • 1
    • 3
  • Ning-Ping Wang
    • 1
  • Suzanna Harmouche
    • 1
  • Tiji Philip
    • 1
  • Xue-Fen Pang
    • 2
  • Feng Bai
    • 2
  • Zhi-Qing Zhao
    • 1
    • 2
    • 4
  1. 1.Cardiovascular Research LaboratoryMercer University School of MedicineSavannahUSA
  2. 2.Department of PhysiologyShanxi Medical UniversityTaiyuanChina
  3. 3.Department of OtolaryngologyFirst Affiliated Hospital of Sun Yat-Sen UniversityGuang ZhouChina
  4. 4.Department of Basic Biomedical SciencesMercer University School of MedicineSavannahUSA

Personalised recommendations