Advertisement

Basic Research in Cardiology

, 107:291 | Cite as

Intake of fermented beverages protect against acute myocardial injury: target organ cardiac effects and vasculoprotective effects

  • Gemma Vilahur
  • Laura Casani
  • Jose M. Guerra
  • Lina Badimon
Original Contribution

Abstract

Mild-to-moderate alcohol consumption has been associated with reduced risk of morbi/mortality from coronary artery disease. However, whether beer intake affords cardioprotection remains unclear. We investigated whether beer intake (alcohol-containing and alcohol-free brew) provides cardioprotection in a pig model of myocardial infarction (MI). Pigs were randomly assigned to: (1) be fed for 10 days a high-cholesterol diet (HC); (2) HC + low-dose beer (LB; 12.5 g alcohol/day); (3) HC + moderate-dose beer (MB; 25 g alcohol/day); or IV) HC + alcohol-free-MB (0.0 g alcohol/day) before MI induction and kept 21 days with the same regime. Scar size, echocardiography, biochemical and oxidative parameters were assessed. Myocardial tissue was obtained for molecular analysis and histology. All beer-fed animals were less prone to arrhythmogenesis during ischemia. At sacrifice, beer intake was associated with lower oxidative stress and higher HDL-antioxidant capacity. Within the ischemic myocardium beer-fed animals showed higher Akt/eNOS and AMPK activation and reduced sirtuin1-related apoptosis. Compared to controls beer intake was associated with lower lipid infiltration, higher TGFβ-related collagen fibril formation and diminished MMP9 activity in the fibrous tissue limiting scar size (HC + LB and HC + MB P < 0.05 and HC + alcohol-free-MB P = 0.068 vs. HC). Systolic-related parameters were similarly worsen post-MI in all groups and further deteriorated in control animals (P ≤ 0.05 vs. post-MI). At sacrifice, all animals showed a worsening in diastolic-related parameters but overall cardiac performance was improved in beer-fed animals regardless of the dose or alcohol content (P ≤ 0.05). In conclusion, beer intake reduces oxidative stress and apoptosis, activates RISK components and favors reparative fibrosis improving global cardiac performance.

Keywords

Large animal model Beer intake Acute myocardial infarction Left ventricular remodeling Cardiac function 

Notes

Acknowledgments

M. A. Canovas, P. Catalina, J. J Andres, and S. Florit support with animal handling and care and for the proper conduct of the experimental work is gratefully and highly recognized. The authors gratefully thank F. J. Rodriguez and M. A. Velasco for their technical assistance. This project is part of the PROMISE European Training Program (DE and SP). This work was supported by SAF 2010-16549 (to LB) from the Spanish Ministry of Science; CICS (to LB and GV); CIBEROBN06 (to LB); and Lilly Foundation (to LB). We thank Fundacion Jesus Serra-FIC, Barcelona, for their continuous support. GV is a recipient of a contract from the Innovation and Science Spanish Ministry (RyC-2009-5495).

Conflict of interest

The authors have no conflict of interest and no relation with industry.

References

  1. 1.
    Anttila P, Jarvi K, Latvala J, Romppanen J, Punnonen K, Niemela O (2005) Biomarkers of alcohol consumption in patients classified according to the degree of liver disease severity. Scand J Clin Lab Invest 65:141–151. doi: 10.1080/00365510510013532 PubMedCrossRefGoogle Scholar
  2. 2.
    Badimon L, Vilahur G, Padro T (2010) Nutraceuticals and atherosclerosis: human trials. Cardiovasc Ther 28:202–215. doi: 10.1111/j.1755-5922.2010.00189.x PubMedCrossRefGoogle Scholar
  3. 3.
    Cal R, Castellano J, Revuelta-Lopez E, Aledo R, Barriga M, Farre J, Vilahur G, Nasarre L, Hove-Madsen L, Badimon L, Llorente-Cortes V (2012) Low-density lipoprotein receptor-related protein 1 mediates hypoxia-induced very low density lipoprotein-cholesteryl ester uptake and accumulation in cardiomyocytes. Cardiovasc Res 94:469–479. doi: 10.1093/cvr/cvs136 PubMedCrossRefGoogle Scholar
  4. 4.
    Callemien D, Jerkovic V, Rozenberg R, Collin S (2005) Hop as an interesting source of resveratrol for brewers: optimization of the extraction and quantitative study by liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. J Agric Food Chem 53:424–429. doi: 10.1021/jf040179n PubMedCrossRefGoogle Scholar
  5. 5.
    Castellano J, Aledo R, Sendra J, Costales P, Juan-Babot O, Badimon L, Llorente-Cortes V (2011) Hypoxia stimulates low-density lipoprotein receptor-related protein-1 expression through hypoxia-inducible factor-1alpha in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31:1411–1420. doi: 10.1161/ATVBAHA.111.225490 PubMedCrossRefGoogle Scholar
  6. 6.
    Chen CH, Gray MO, Mochly-Rosen D (1999) Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: role of epsilon protein kinase C. Proc Natl Acad Sci USA 96:12784–12789. doi: 10.1073/pnas.96.22.12784 PubMedCrossRefGoogle Scholar
  7. 7.
    Dorn JM, Hovey K, Williams BA, Freudenheim JL, Russell M, Nochajski TH, Trevisan M (2007) Alcohol drinking pattern and non-fatal myocardial infarction in women. Addiction 102:730–739. doi: 10.1111/j.1360-0443.2007.01765.x PubMedCrossRefGoogle Scholar
  8. 8.
    Esterbauer H, Striegl G, Puhl H, Rotheneder M (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 6:67–75. doi: 10.3109/10715768909073429 PubMedCrossRefGoogle Scholar
  9. 9.
    Flesch M, Rosenkranz S, Erdmann E, Bohm M (2001) Alcohol and the risk of myocardial infarction. Basic Res Cardiol 96:128–135. doi: 10.1007/s003950170062 PubMedCrossRefGoogle Scholar
  10. 10.
    Frankel EN, Waterhouse AL, Kinsella JE (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 341:1103–1104. doi: 10.1016/0140-6736(93)92472-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Fuhrman B, Lavy A, Aviram M (1995) Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am J Clin Nutr 61:549–554PubMedGoogle Scholar
  12. 12.
    Gomez L, Paillard M, Price M, Chen Q, Teixeira G, Spiegel S, Lesnefsky EJ (2011) A novel role for mitochondrial sphingosine-1-phosphate produced by sphingosine kinase-2 in PTP-mediated cell survival during cardioprotection. Basic Res Cardiol 106:1341–1353. doi: 10.1007/s00395-011-0223-7 PubMedCrossRefGoogle Scholar
  13. 13.
    Gronbaek M, Becker U, Johansen D, Gottschau A, Schnohr P, Hein HO, Jensen G, Sorensen TI (2000) Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer. Ann Intern Med 133:411–419PubMedGoogle Scholar
  14. 14.
    Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi: 10.1007/s00395-010-0121-4 PubMedCrossRefGoogle Scholar
  15. 15.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460. doi: 10.1016/j.cardiores.2003.09.024 PubMedCrossRefGoogle Scholar
  16. 16.
    Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi: 10.1161/CIRCULATIONAHA.108.805242 PubMedCrossRefGoogle Scholar
  17. 17.
    Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182. doi: 10.1161/CIRCULATIONAHA.110.958033 PubMedCrossRefGoogle Scholar
  18. 18.
    Ibanez B, Prat-Gonzalez S, Speidl WS, Vilahur G, Pinero A, Cimmino G, Garcia MJ, Fuster V, Sanz J, Badimon JJ (2007) Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115:2909–2916. doi: 10.1161/CIRCULATIONAHA.106.679639 PubMedCrossRefGoogle Scholar
  19. 19.
    Kanno S, Lee PC, Zhang Y, Ho C, Griffith BP, Shears LL 2nd, Billiar TR (2000) Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation 101:2742–2748. doi: 10.1161/01.CIR.101.23.2742 PubMedCrossRefGoogle Scholar
  20. 20.
    Kelly RF, Lamont KT, Somers S, Hacking D, Lacerda L, Thomas P, Opie LH, Lecour S (2010) Ethanolamine is a novel STAT-3 dependent cardioprotective agent. Basic Res Cardiol 105:763–770. doi: 10.1007/s00395-010-0125-0 PubMedCrossRefGoogle Scholar
  21. 21.
    Khadour FH, O’Brien DW, Fu Y, Armstrong PW, Schulz R (1998) Endothelial nitric oxide synthase increases in left atria of dogs with pacing-induced heart failure. Am J Physiol 275:H1971–H1978PubMedGoogle Scholar
  22. 22.
    Klatsky AL, Armstrong MA, Friedman GD (1990) Risk of cardiovascular mortality in alcohol drinkers, ex-drinkers and nondrinkers. Am J Cardiol 66:1237–1242. doi: 10.1016/0002-9149(90)91107-H PubMedCrossRefGoogle Scholar
  23. 23.
    Kloner RA, Rezkalla SH (2007) To drink or not to drink? That is the question. Circulation 116:1306–1317. doi: 10.1161/CIRCULATIONAHA.106.678375 PubMedCrossRefGoogle Scholar
  24. 24.
    Krenz M, Baines CP, Heusch G, Downey JM, Cohen MV (2001) Acute alcohol-induced protection against infarction in rabbit hearts: differences from and similarities to ischemic preconditioning. J Mol Cell Cardiol 33:2015–2022. doi: 10.1006/jmcc.2001.1465 PubMedCrossRefGoogle Scholar
  25. 25.
    Krenz M, Baines CP, Yang XM, Heusch G, Cohen MV, Downey JM (2001) Acute ethanol exposure fails to elicit preconditioning-like protection in in situ rabbit hearts because of its continued presence during ischemia. J Am Coll Cardiol 37:601–607. doi: 10.1016/S0735-1097(00)01125-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Krenz M, Cohen MV, Downey JM (2004) Protective and anti-protective effects of acute ethanol exposure in myocardial ischemia/reperfusion. Pathophysiology 10:113–119. doi: 10.1016/j.pathophys.2003.10.006 PubMedCrossRefGoogle Scholar
  27. 27.
    Levantesi G, Marfisi R, Mozaffarian D, Franzosi MG, Maggioni A, Nicolosi GL, Schweiger C, Silletta M, Tavazzi L, Tognoni G, Marchioli R (2011) Wine consumption and risk of cardiovascular events after myocardial infarction: results from the GISSI-Prevenzione trial. Int J Cardiol. doi: 10.1016/j.ijcard.2011.06.053 PubMedGoogle Scholar
  28. 28.
    Martinez Alvarez JR, Belles VV, Lopez-Jaen AB, Marin AV, Codoner-Franch P (2009) Effects of alcohol-free beer on lipid profile and parameters of oxidative stress and inflammation in elderly women. Nutrition 25:182–187. doi: 10.1016/j.nut.2008.08.005 PubMedCrossRefGoogle Scholar
  29. 29.
    Mikhailidis DPJJ, Barradas MA, Green N, Dandona P (1983) Effect of ethanol on vascular prostacyclin (prostaglandin I2) synthesis, platelet aggregation, and platelet thromboxane release. Br Med J (Clin Res Ed) 287:1495–1498. doi: 10.1136/bmj.287.6404.1495 CrossRefGoogle Scholar
  30. 30.
    Miyamae M, Diamond I, Weiner MW, Camacho SA, Figueredo VM (1997) Regular alcohol consumption mimics cardiac preconditioning by protecting against ischemia-reperfusion injury. Proc Natl Acad Sci USA 94:3235–3239. doi: 10.1073/pnas.94.7.3235 PubMedCrossRefGoogle Scholar
  31. 31.
    Mukamal KJ, Chiuve SE, Rimm EB (2006) Alcohol consumption and risk for coronary heart disease in men with healthy lifestyles. Arch Intern Med 166:2145–2150. doi: 10.1001/archinte.166.19.2145 PubMedCrossRefGoogle Scholar
  32. 32.
    Mukamal KJ, Jensen MK, Gronbaek M, Stampfer MJ, Manson JE, Pischon T, Rimm EB (2005) Drinking frequency, mediating biomarkers, and risk of myocardial infarction in women and men. Circulation 112:1406–1413. doi: 10.1161/CIRCULATIONAHA.105.537704 PubMedCrossRefGoogle Scholar
  33. 33.
    Ray PS, Maulik G, Cordis GA, Bertelli AA, Bertelli A, Das DK (1999) The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med 27:160–169. doi: 10.1016/S0891-5849(99)00063-5 PubMedCrossRefGoogle Scholar
  34. 34.
    Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526. doi: 10.1016/0140-6736(92)91277-F PubMedCrossRefGoogle Scholar
  35. 35.
    Ridker PM, Vaughan DE, Stampfer MJ, Glynn RJ, Hennekens CH (1994) Association of moderate alcohol consumption and plasma concentration of endogenous tissue-type plasminogen activator. JAMA 272:929–933. doi: 10.1001/jama.272.12.929 PubMedCrossRefGoogle Scholar
  36. 36.
    Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ (1999) Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 319:1523–1528. doi: 10.1136/bmj.319.7224.1523 PubMedCrossRefGoogle Scholar
  37. 37.
    Robich MP, Osipov RM, Nezafat R, Feng J, Clements RT, Bianchi C, Boodhwani M, Coady MA, Laham RJ, Sellke FW (2010) Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation 122:S142–S149. doi: 10.1161/CIRCULATIONAHA.109.920132 PubMedCrossRefGoogle Scholar
  38. 38.
    Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486. doi: 10.1016/0891-5849(94)00240-K PubMedCrossRefGoogle Scholar
  39. 39.
    Sato M, Maulik N, Das DK (2002) Cardioprotection with alcohol: role of both alcohol and polyphenolic antioxidants. Ann N Y Acad Sci 957:122–135. doi: 10.1111/j.1749-6632.2002.tb02911.x PubMedCrossRefGoogle Scholar
  40. 40.
    Sattler KJ, Elbasan S, Keul P, Elter-Schulz M, Bode C, Graler MH, Brocker-Preuss M, Budde T, Erbel R, Heusch G, Levkau B (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardiol 105:821–832. doi: 10.1007/s00395-010-0112-5 PubMedCrossRefGoogle Scholar
  41. 41.
    Schwartz Longacre L, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heide RS, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 National Heart, Lung, and Blood Institute Workshop. Circulation 124:1172–1179. doi: 10.1161/CIRCULATIONAHA.111.032698 PubMedCrossRefGoogle Scholar
  42. 42.
    Slater SJ, Cook AC, Seiz JL, Malinowski SA, Stagliano BA, Stubbs CD (2003) Effects of ethanol on protein kinase C alpha activity induced by association with Rho GTPases. Biochemistry 42:12105–12114. doi: 10.1021/bi034860e PubMedCrossRefGoogle Scholar
  43. 43.
    St Leger AS, Cochrane AL, Moore F (1979) Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1:1017–1020. doi: 10.1016/S0140-6736(79)92765-x PubMedCrossRefGoogle Scholar
  44. 44.
    Stampfer MJ, Colditz GA, Willett WC, Speizer FE, Hennekens CH (1988) A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. N Engl J Med 319:267–273. doi: 10.1056/NEJM198808043190503 PubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki K, Elkind MS, Boden-Albala B, Jin Z, Berry G, Di Tullio MR, Sacco RL, Homma S (2009) Moderate alcohol consumption is associated with better endothelial function: a cross sectional study. BMC Cardiovasc Disord 9:8. doi: 10.1186/1471-2261-9-8 PubMedCrossRefGoogle Scholar
  46. 46.
    Tang XL, Takano H, Xuan YT, Sato H, Kodani E, Dawn B, Zhu Y, Shirk G, Wu WJ, Bolli R (2005) Hypercholesterolemia abrogates late preconditioning via a tetrahydrobiopterin-dependent mechanism in conscious rabbits. Circulation 112:2149–2156. doi: 10.1161/CIRCULATIONAHA.105.566190 PubMedCrossRefGoogle Scholar
  47. 47.
    Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck-Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409. doi: 10.1161/CIRCULATIONAHA.105.607135 PubMedCrossRefGoogle Scholar
  48. 48.
    Thomas WP, Gaber CE, Jacobs GJ, Kaplan PM, Lombard CW, Moise NS, Moses BL (1993) Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine. J Vet Intern Med 7:247–252. doi: 10.1111/j.1939-1676.1993.tb01015.x PubMedCrossRefGoogle Scholar
  49. 49.
    Vaziri ND, Moradi H, Pahl MV, Fogelman AM, Navab M (2009) In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int 76:437–444. doi: 10.1038/ki.2009.177 PubMedCrossRefGoogle Scholar
  50. 50.
    Vilahur G, Casani L, Juan-Babot O, Guerra J, Badimon L (2012) Infiltrated cardiac lipids impair myofibroblast-induced healing of the myocardial scar post-myocardial infarction. Atherosclerosis. doi: 10.1016/j.atherosclerosis.2012.07.003 Google Scholar
  51. 51.
    Vilahur G, Casani L, Pena E, Duran X, Juan-Babot O, Badimon L (2009) Induction of RISK by HMG-CoA reductase inhibition affords cardioprotection after myocardial infarction. Atherosclerosis 206:95–101. doi: 10.1016/j.atherosclerosis.2009.02.009 PubMedCrossRefGoogle Scholar
  52. 52.
    Vilahur G, Hernandez-Vera R, Molins B, Casani L, Duran X, Padro T, Badimon L (2009) Short-term myocardial ischemia induces cardiac modified C-reactive protein expression and proinflammatory gene (cyclo-oxygenase-2, monocyte chemoattractant protein-1, and tissue factor) upregulation in peripheral blood mononuclear cells. J Thromb Haemost 7:485–493. doi: 10.1111/j.1538-7836.2008.03244.x PubMedCrossRefGoogle Scholar
  53. 53.
    Vilahur G, Juan-Babot O, Pena E, Onate B, Casani L, Badimon L (2011) Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol 50:522–533. doi: 10.1016/j.yjmcc.2010.12.021 PubMedCrossRefGoogle Scholar
  54. 54.
    Yano K, Reed DM, McGee DL (1984) Ten-year incidence of coronary heart disease in the Honolulu Heart Program. Relationship to biologic and lifestyle characteristics. Am J Epidemiol 119:653–666PubMedGoogle Scholar
  55. 55.
    Zhou HZ, Karliner JS, Gray MO (2002) Moderate alcohol consumption induces sustained cardiac protection by activating PKC-epsilon and Akt. Am J Physiol Heart Circ Physiol 283:H165–H174PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gemma Vilahur
    • 1
    • 2
  • Laura Casani
    • 1
  • Jose M. Guerra
    • 3
  • Lina Badimon
    • 1
    • 2
    • 4
  1. 1.Cardiovascular Research Center, CSIC-ICCCHospital de la Santa Creu i Sant PauBarcelonaSpain
  2. 2.CIBEROBN-Pathophysiology of Obesity and NutritionBarcelonaSpain
  3. 3.Cardiology UnitHospital de la Santa Creu i Sant PauBarcelonaSpain
  4. 4.Cardiovascular Research ChairUABBarcelonaSpain

Personalised recommendations