Basic Research in Cardiology

, 107:283 | Cite as

Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells

  • Daniel Siuda
  • Ulrich Zechner
  • Nady El Hajj
  • Dirk Prawitt
  • David Langer
  • Ning Xia
  • Sven Horke
  • Andrea Pautz
  • Hartmut Kleinert
  • Ulrich Förstermann
  • Huige LiEmail author
Original Contribution


Nox4 is a member of the NADPH oxidase family, which represents a major source of reactive oxygen species (ROS) in the vascular wall. Nox4-mediated ROS production mainly depends on the expression levels of the enzyme. The present study was aimed to investigate the mechanisms of Nox4 transcription regulation by histone deacetylases (HDAC). In human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells, treatment with the pan-HDAC inhibitor scriptaid led to a marked decrease in Nox4 mRNA expression. A similar down-regulation of Nox4 mRNA expression was observed by siRNA-mediated knockdown of HDAC3. HDAC inhibition in endothelial cells was associated with enhanced histone acetylation, increased chromatin accessibility in the human Nox4 promoter region, with no significant changes in DNA methylation. In addition, we provided evidence that c-Jun played an important role in controlling Nox4 transcription. Knockdown of c-Jun with siRNA led to a down-regulation of Nox4 mRNA expression. In response to scriptaid treatment, the binding of c-Jun to the Nox4 promoter region was reduced despite the open chromatin structure. In parallel, the binding of RNA polymerase IIa to the Nox4 promoter was significantly inhibited as well, which may explain the reduction in Nox4 transcription. In conclusion, HDAC inhibition decreases Nox4 transcription in human endothelial cells by preventing the binding of transcription factor(s) and polymerase(s) to the Nox4 promoter, most likely because of a hyperacetylation-mediated steric inhibition.


NADPH oxidase Nox4 Endothelial cells Histone deacetylase Gene regulation 



This work was supported by the Deutsche Forschungsgemeinschaft [DFG, grant LI-1042/1-1], by the Federal Ministry of Education and Research (BMBF 01EO1003), and by a grant from the University Medical Center (Schwerpunkt Vaskuläre Prävention). D. Langer was supported by a PhD-scholarship of the Studienstiftung des deutschen Volkes. We thank Gisela Reifenberg for excellent technical assistance.

Conflict of interest


Supplementary material

395_2012_283_MOESM1_ESM.pdf (494 kb)
Supplementary material 1 (PDF 493 kb)


  1. 1.
    Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109:227–233. doi: 10.1161/01.CIR.0000105680.92873.70 PubMedCrossRefGoogle Scholar
  2. 2.
    Alam S, Li H, Margariti A, Martin D, Zampetaki A, Habi O, Cockerill G, Hu Y, Xu Q, Zeng L (2011) Galectin-9 protein expression in endothelial cells is positively regulated by histone deacetylase 3. J Biol Chem 286:44211–44217. doi: 10.1074/jbc.M111.242289 PubMedCrossRefGoogle Scholar
  3. 3.
    Ballestar E (2011) An introduction to epigenetics. Adv Exp Med Biol 711:1–11PubMedCrossRefGoogle Scholar
  4. 4.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. doi: 10.1152/physrev.00044.2005 PubMedCrossRefGoogle Scholar
  5. 5.
    Blackwell L, Norris J, Suto CM, Janzen WP (2008) The use of diversity profiling to characterize chemical modulators of the histone deacetylases. Life Sci 82:1050–1058. doi: 10.1016/j.lfs.2008.03.004 PubMedCrossRefGoogle Scholar
  6. 6.
    Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 65:16–27. doi: 10.1016/j.cardiores.2004.08.007 PubMedCrossRefGoogle Scholar
  7. 7.
    Diebold I, Petry A, Hess J, Gorlach A (2010) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21:2087–2096. doi: 10.1091/mbc.E09-12-1003 PubMedCrossRefGoogle Scholar
  8. 8.
    Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989. doi: 10.1158/1541-7786.MCR-07-0324 PubMedCrossRefGoogle Scholar
  9. 9.
    Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471. doi: 10.1038/nrd3403 PubMedCrossRefGoogle Scholar
  10. 10.
    Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737PubMedCrossRefGoogle Scholar
  11. 11.
    Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868. doi: 10.1038/nrc1209 PubMedCrossRefGoogle Scholar
  12. 12.
    Ellmark SH, Dusting GJ, Fui MN, Guzzo-Pernell N, Drummond GR (2005) The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res 65:495–504. doi: 10.1016/j.cardiores.2004.10.026 PubMedCrossRefGoogle Scholar
  13. 13.
    Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, Messeguer X (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–3653PubMedCrossRefGoogle Scholar
  14. 14.
    Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5:338–349. doi: 10.1038/ncpcardio1211 PubMedCrossRefGoogle Scholar
  15. 15.
    Fu Y, Zhang Y, Wang Z, Wang L, Wei X, Zhang B, Wen Z, Fang H, Pang Q, Yi F (2010) Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrol 32:581–589. doi: 10.1159/000322105 PubMedCrossRefGoogle Scholar
  16. 16.
    Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536–2544. doi: 10.1093/emboj/20.10.2536 PubMedCrossRefGoogle Scholar
  17. 17.
    Goettsch C, Goettsch W, Brux M, Haschke C, Brunssen C, Muller G, Bornstein SR, Duerrschmidt N, Wagner AH, Morawietz H (2011) Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol 106:551–561. doi: 10.1007/s00395-011-0170-3 PubMedCrossRefGoogle Scholar
  18. 18.
    Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, Epstein JA, Gruber PJ (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22:3549–3560. doi: 10.1096/fj.08-108548 CrossRefGoogle Scholar
  19. 19.
    Griendling KK (2004) Novel NAD(P)H oxidases in the cardiovascular system. Heart 90:491–493PubMedCrossRefGoogle Scholar
  20. 20.
    Guzik TJ, Sadowski J, Guzik B, Jopek A, Kapelak B, Przybylowski P, Wierzbicki K, Korbut R, Harrison DG, Channon KM (2006) Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26:333–339. doi: 10.1161/01.ATV.0000196651.64776.51 PubMedCrossRefGoogle Scholar
  21. 21.
    Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11APubMedCrossRefGoogle Scholar
  22. 22.
    Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov S, Hart CM (2005) Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 288:C899–C905. doi: 10.1152/ajpcell.00474.2004 PubMedCrossRefGoogle Scholar
  23. 23.
    Im YB, Jee MK, Jung JS, Choi JI, Jang JH, Kang SK (2012) miR23b ameliorates neuropathic pain in spinal cord by silencing NADPH oxidase 4. Antioxid Redox Signal 16:1046–1060. doi: 10.1089/ars.2011.4224 PubMedCrossRefGoogle Scholar
  24. 24.
    Jung SB, Kim CS, Naqvi A, Yamamori T, Mattagajasingh I, Hoffman TA, Cole MP, Kumar A, Dericco JS, Jeon BH, Irani K (2010) Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res 107:877–887. doi: 10.1161/CIRCRESAHA.110.222968 PubMedCrossRefGoogle Scholar
  25. 25.
    Katsuyama M, Hirai H, Iwata K, Ibi M, Matsuno K, Matsumoto M, Yabe-Nishimura C (2011) Sp3 transcription factor is crucial for transcriptional activation of the human NOX4 gene. FEBS J 278:964–972. doi: 10.1111/j.1742-4658.2011.08018.x PubMedCrossRefGoogle Scholar
  26. 26.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006. doi: 10.1101/gr.229102 Article published online before print in May 2002PubMedGoogle Scholar
  27. 27.
    Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97. doi: 10.1016/j.tibs.2005.12.008 PubMedCrossRefGoogle Scholar
  28. 28.
    Kroller-Schon S, Schulz E, Wenzel P, Kleschyov AL, Hortmann M, Torzewski M, Oelze M, Renne T, Daiber A, Munzel T (2011) Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress. Basic Res Cardiol 106:1147–1158. doi: 10.1007/s00395-011-0227-3 PubMedCrossRefGoogle Scholar
  29. 29.
    LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD (2009) DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genomics 2:67. doi: 10.1186/1755-8794-2-67 PubMedCrossRefGoogle Scholar
  30. 30.
    Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297. doi: 10.1152/ajpregu.00758.2002 PubMedGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  32. 32.
    Manea A, Tanase LI, Raicu M, Simionescu M (2010) Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 30:105–112. doi: 10.1161/ATVBAHA.109.193896 PubMedCrossRefGoogle Scholar
  33. 33.
    Manea A, Tanase LI, Raicu M, Simionescu M (2010) Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem Biophys Res Commun 396:901–907. doi: 10.1016/j.bbrc.2010.05.019 PubMedCrossRefGoogle Scholar
  34. 34.
    Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene expression. Circ Res 102:873–887. doi: 10.1161/CIRCRESAHA.107.171025 PubMedCrossRefGoogle Scholar
  35. 35.
    Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334PubMedCrossRefGoogle Scholar
  36. 36.
    Miyano K, Ueno N, Takeya R, Sumimoto H (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281:21857–21868. doi: 10.1074/jbc.M513665200 PubMedCrossRefGoogle Scholar
  37. 37.
    Morawietz H (2011) Endothelial NADPH oxidases: friends or foes? Basic Res Cardiol 106:521–525. doi: 10.1007/s00395-011-0188-6 PubMedCrossRefGoogle Scholar
  38. 38.
    Murdoch CE, Alom-Ruiz SP, Wang MS, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106:527–538. doi: 10.1007/s00395-011-0179-7 PubMedCrossRefGoogle Scholar
  39. 39.
    Park Y, Yang JY, Zhang HR, Chen XN, Zhang CH (2011) Effect of PAR2 in regulating TNF-alpha and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111–123. doi: 10.1007/s00395-010-0129-9 PubMedCrossRefGoogle Scholar
  40. 40.
    Pendyala S, Moitra J, Kalari S, Kleeberger SR, Zhao Y, Reddy SP, Garcia JG, Natarajan V (2011) Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: identification of functional antioxidant response elements on the Nox4 promoter. Free Radic Biol Med 50:1749–1759. doi: 10.1016/j.freeradbiomed.2011.03.022 PubMedCrossRefGoogle Scholar
  41. 41.
    Rossig L, Li H, Fisslthaler B, Urbich C, Fleming I, Forstermann U, Zeiher AM, Dimmeler S (2002) Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 91:837–844PubMedCrossRefGoogle Scholar
  42. 42.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  43. 43.
    Ruf N, Bahring S, Galetzka D, Pliushch G, Luft FC, Nurnberg P, Haaf T, Kelsey G, Zechner U (2007) Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum Mol Genet 16:2591–2599. doi: 10.1093/hmg/ddm216 PubMedCrossRefGoogle Scholar
  44. 44.
    Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi: 10.1007/s00395-011-0190-z PubMedCrossRefGoogle Scholar
  45. 45.
    Smith CL (2008) A shifting paradigm: histone deacetylases and transcriptional activation. BioEssays 30:15–24. doi: 10.1002/bies.20687 PubMedCrossRefGoogle Scholar
  46. 46.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45. doi: 10.1038/47412 PubMedCrossRefGoogle Scholar
  47. 47.
    Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR (2006) Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290:L661–L673. doi: 10.1152/ajplung.00269.2005 PubMedCrossRefGoogle Scholar
  48. 48.
    Takac I, Schroder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286:13304–13313. doi: 10.1074/jbc.M110.192138 PubMedCrossRefGoogle Scholar
  49. 49.
    Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, Mahe C, Agostini M, Knight RA, Melino G, Federici M (2011) miR-146a is modulated in human endothelial cell with aging. Atherosclerosis 217:326–330. doi: 10.1016/j.atherosclerosis.2011.03.034 PubMedCrossRefGoogle Scholar
  50. 50.
    Xia N, Daiber A, Habermeier A, Closs EI, Thum T, Spanier G, Lu Q, Oelze M, Torzewski M, Lackner KJ, Munzel T, Forstermann U, Li H (2010) Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 335:149–154. doi: 10.1124/jpet.110.168724 PubMedCrossRefGoogle Scholar
  51. 51.
    Xu H, Czerwinski P, Hortmann M, Sohn HY, Forstermann U, Li H (2008) Protein kinase C alpha promotes angiogenic activity of human endothelial cells via induction of vascular endothelial growth factor. Cardiovasc Res 78:349–355. doi: 10.1093/cvr/cvm085 PubMedCrossRefGoogle Scholar
  52. 52.
    Xu H, Goettsch C, Xia N, Horke S, Morawietz H, Forstermann U, Li H (2008) Differential roles of PKCalpha and PKCepsilon in controlling the gene expression of Nox4 in human endothelial cells. Free Radic Biol Med 44:1656–1667. doi: 10.1016/j.freeradbiomed.2008.01.023 PubMedCrossRefGoogle Scholar
  53. 53.
    Zampetaki A, Zeng L, Margariti A, Xiao Q, Li H, Zhang Z, Pepe AE, Wang G, Habi O, deFalco E, Cockerill G, Mason JC, Hu Y, Xu Q (2010) Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow. Circulation 121:132–142. doi: 10.1161/CIRCULATIONAHA.109.890491 PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang L, Sheppard OR, Shah AM, Brewer AC (2008) Positive regulation of the NADPH oxidase NOX4 promoter in vascular smooth muscle cells by E2F. Free Radic Biol Med 45:679–685. doi: 10.1016/j.freeradbiomed.2008.05.019 PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang YS, He L, Liu B, Li NS, Luo XJ, Hu CP, Ma QL, Zhang GG, Li YJ, Peng J (2012) A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia-reperfusion. Basic Res Cardiol 107:266. doi: 10.1007/s00395-012-0266-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Daniel Siuda
    • 1
    • 2
  • Ulrich Zechner
    • 3
  • Nady El Hajj
    • 3
  • Dirk Prawitt
    • 4
  • David Langer
    • 4
  • Ning Xia
    • 1
  • Sven Horke
    • 1
  • Andrea Pautz
    • 1
  • Hartmut Kleinert
    • 1
  • Ulrich Förstermann
    • 1
  • Huige Li
    • 1
    Email author
  1. 1.Department of PharmacologyUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
  2. 2.Center of Thrombosis and Hemostasis (CTH)University Medical Center, Johannes Gutenberg UniversityMainzGermany
  3. 3.Institute of Human GeneticsUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
  4. 4.Centre for Paediatrics and Adolescent MedicineUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany

Personalised recommendations