Advertisement

Chronic treatment with long acting phosphodiesterase-5 inhibitor tadalafil alters proteomic changes associated with cytoskeletal rearrangement and redox regulation in Type 2 diabetic hearts

  • Saisudha Koka
  • Lei Xi
  • Rakesh C. KukrejaEmail author
Original Contribution

Abstract

Diabetic patients are prone to metabolic perturbations that progressively contribute to structural, functional and proteomic alterations in the myocardium. Phosphodiesterase-5 (PDE-5) inhibitors exhibit cardioprotective effects against ischemic/reperfusion injury, however the effects of chronic administration of PDE-5 inhibitors, particularly under diabetic conditions, remain unknown. Hence, the present study was designed to identify novel protein targets related to long-acting PDE-5 inhibitor tadalafil-induced cardioprotection in diabetes. Using two-dimensional differential in-gel electrophoresis with 3 CyDye labeling and MALDI–TOF/TOF tandem mass spectrometry we identified alterations in the expressions of cardiac proteins in diabetic db/db mice treated with tadalafil. Tadalafil reversed the coordinated alterations of cytoskeletal/contractile proteins such as myosin light chain (MLY) 2 and 4, myosin heavy chain α and myosin-binding protein C which contributes to contractile dysfunction. The expression of intermediate filament protein vimentin and extra-cellular matrix proteins like cysteine and glycine rich protein-3 and collagen type VI α were upregulated in db/db mice indicating cardiac remodeling in diabetes. These detrimental proteomic alterations were reflected in cardiac function which were reversed in tadalafil treated mice. Tadalafil also enhanced antioxidant enzyme glutathione S-transferase Kappa-1 (GSKT-1) and downregulated redox regulatory chaperones like heat shock protein 8 (HSPA8), and 75 kD glucose regulatory protein (75GRP). Furthermore, tadalafil treatment significantly attenuated GSSG/GSH ratio and improved the metabolic status of db/db mice. Chronic treatment with tadalafil in db/db mice modulates proteins involved in cytoskeletal rearrangement and redox signaling of the heart, which may explain the beneficial effects of PDE-5 inhibition in diabetes.

Keywords

Diabetes Phosphodiesterase-5 inhibitors Proteomics Cytoskeletal proteins Cardiac remodelling Oxidative stress 

Abbreviations

2D-DIGE

Two-dimensional differential in-gel electrophoresis

ED

Erectile dysfunction

CGRP-3

Cysteine and glycine rich protein-3

EF-Tu

Tu translational elongation factor

GSH

Reduced glutathione

GSKT-1

Glutathione S-transferase Kappa 1

GSSG

Oxidised glutathione

HSPA8

Heat shock protein 8

HMGB1

High-mobility 553 group box 1

75GRP

75 kD glucose related protein

MBP-C

Myosin-binding protein C

αMHC

Myosin heavy-chain α

MLY-2

Myosin light chain 2

MLY-4

Myosin light chain 4

NO

Nitric oxide

PDE-5

Phosphodiesterase-5

OPA

o-phthalaldehyde

TAD

Tadalafil

ROS

Reactive oxygen species

Notes

Acknowledgments

This work was supported by Grants from the National Institutes of Health (HL51045, HL79424, HL93685) to Rakesh C Kukreja. Saisudha Koka is supported by a postdoctoral fellowship from American Heart Association (11POST7400028). The authors acknowledge Dr. John Liao of Applied Biomics, Inc. for his excellent technical support in proteomic analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441. doi: 10.2337/diabetes.52.2.434 PubMedCrossRefGoogle Scholar
  2. 2.
    Bartnik M, Norhammar A, Ryden L (2007) Hyperglycaemia and cardiovascular disease. J Intern Med 262:145–156. doi: 10.1111/j.1365-2796.2007.01831.x PubMedCrossRefGoogle Scholar
  3. 3.
    Behr-Roussel D, Gorny D, Mevel K, Caisey S, Bernabe J, Burgess G, Wayman C, Alexandre L, Giuliano F (2005) Chronic sildenafil improves erectile function and endothelium-dependent cavernosal relaxations in rats: lack of tachyphylaxis. Eur Urol 47:87–91. doi: 10.1016/j.eururo.2004.09.005 PubMedCrossRefGoogle Scholar
  4. 4.
    Berria R, Wang L, Richardson DK, Finlayson J, Belfort R, Pratipanawatr T, De Filippis EA, Kashyap S, Mandarino LJ (2006) Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab 290:E560–E565. doi: 10.1152/ajpendo.00202.2005 PubMedCrossRefGoogle Scholar
  5. 5.
    Bertoni AG, Tsai A, Kasper EK, Brancati FL (2003) Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care 26:2791–2795. doi: 10.2337/diacare.26.10.2791 PubMedCrossRefGoogle Scholar
  6. 6.
    Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223. doi: 10.1161/CIRCULATIONAHA.106.679597 PubMedCrossRefGoogle Scholar
  7. 7.
    Brickson S, Fitzsimons DP, Pereira L, Hacker T, Valdivia H, Moss RL (2007) In vivo left ventricular functional capacity is compromised in cMyBP-C null mice. Am J Physiol Heart Circ Physiol 292:H1747–H1754. doi: 10.1152/ajpheart.01037.2006 PubMedCrossRefGoogle Scholar
  8. 8.
    Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280:12944–12955. doi: 10.1074/jbc.M404706200 PubMedCrossRefGoogle Scholar
  9. 9.
    Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, Davies PJ, Taegtmeyer H (2000) Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol 32:985–996. doi: 10.1006/jmcc.2000.1139 PubMedCrossRefGoogle Scholar
  10. 10.
    Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247. doi: 10.1016/S0008-6363(98)00186-2 PubMedCrossRefGoogle Scholar
  11. 11.
    Dillmann WH (1982) Influence of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the heart of diabetic rats. Metabolism 31:199–204. doi: 10.1016/0026-0495(82)90052-X PubMedCrossRefGoogle Scholar
  12. 12.
    Elrod JW, Greer JJ, Lefer DJ (2007) Sildenafil-mediated acute cardioprotection is independent of the NO/cGMP pathway. Am J Physiol Heart Circ Physiol 292:H342–H347. doi: 10.1152/ajpheart.00306.2006 PubMedCrossRefGoogle Scholar
  13. 13.
    Essop MF, Chan WA, Hattingh S (2011) Proteomic analysis of mitochondrial proteins in a mouse model of type 2 diabetes. Cardiovasc J Afr 22:175–178. doi: 10.5830/CVJA-2010-058 PubMedCrossRefGoogle Scholar
  14. 14.
    Falcao-Pires I, Palladini G, Goncalves N, van der Velden J, Moreira-Goncalves D, Miranda-Silva D, Salinaro F, Paulus WJ, Niessen HWM, Perlini S, Leite-Moreira AF (2011) Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 106:801–814. doi: 10.1007/s00395-011-0184-x PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111:1601–1610. doi: 10.1161/01.CIR.0000160359.49478.C2 PubMedCrossRefGoogle Scholar
  16. 16.
    Flashman E, Redwood C, Moolman-Smook J, Watkins H (2004) Cardiac myosin binding protein C: its role in physiology and disease. Circ Res 94:1279–1289. doi: 10.1161/01.RES.0000127175.21818.C2 PubMedCrossRefGoogle Scholar
  17. 17.
    Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, Tourmen Y, Henrion D, Furber A, Prunier F (2011) Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3 beta signaling. Basic Res Cardiol 106:147–162. doi: 10.1007/s00395-010-0130-3 PubMedCrossRefGoogle Scholar
  18. 18.
    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146. doi: 10.1161/01.CIR.100.10.1134 PubMedCrossRefGoogle Scholar
  19. 19.
    Hayat SA, Patel B, Khattar RS, Malik RA (2004) Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci (Lond) 107:539–557. doi: 10.1042/CS20040057 CrossRefGoogle Scholar
  20. 20.
    Honisch A, Theuring N, Ebner B, Wagner C, Strasser RH, Weinbrenner C (2010) Postconditioning with levosimendan reduces the infarct size involving the PI3K pathway and KATP-channel activation but is independent of PDE-III inhibition. Basic Res Cardiol 105:155–167. doi: 10.1007/s00395-009-0064-9 PubMedCrossRefGoogle Scholar
  21. 21.
    Howarth FC, Qureshi MA, Hassan Z, Al Kury LT, Isaev D, Parekh K, Yammahi SR, Oz M, Adrian TE, Adeghate E (2011) Changing pattern of gene expression is associated with ventricular myocyte dysfunction and altered mechanisms of Ca2+ signaling in young type 2 Zucker diabetic fatty rat heart. Exp Physiol 96:325–337. doi: 10.1113/expphysiol.2010.055574 PubMedCrossRefGoogle Scholar
  22. 22.
    Ihm SH, Chang K, Kim HY, Baek SH, Youn HJ, Seung KB, Kim JH (2010) Peroxisome proliferator-activated receptor-gamma activation attenuates cardiac fibrosis in type 2 diabetic rats: the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res Cardiol 105:399–407. doi: 10.1007/s00395-009-0071-x PubMedCrossRefGoogle Scholar
  23. 23.
    Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371. doi: 10.1038/ng1270 PubMedCrossRefGoogle Scholar
  24. 24.
    Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34. doi: 10.1016/0002-9149(74)90089-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Koka S, Das A, Zhu SG, Durrant D, Xi L, Kukreja RC (2010) Long-acting phosphodiesterase-5 inhibitor tadalafil attenuates doxorubicin-induced cardiomyopathy without interfering with chemotherapeutic effect. J Pharmacol Exp Ther 334:1023–1030. doi: 10.1124/jpet.110.170191 PubMedCrossRefGoogle Scholar
  26. 26.
    Koka S, Kukreja RC (2010) Attenuation of doxorubicin-induced cardiotoxicity by tadalafil: a long acting phosphodiesterase-5 inhibitor. Mol Cell Pharmacol 2:173–178. doi: 10.4255/mcpharmacol.10.23 PubMedGoogle Scholar
  27. 27.
    Kuan J, Brock G (2002) Selective phosphodiesterase type 5 inhibition using tadalafil for the treatment of erectile dysfunction. Expert Opin Investig Drugs 11:1605–1613. doi: 10.1517/13543784.11.11.1605 PubMedCrossRefGoogle Scholar
  28. 28.
    Kudlicki W, Coffman A, Kramer G, Hardesty B (1997) Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem 272:32206–32210. doi: 10.1074/jbc.272.51.32206 PubMedCrossRefGoogle Scholar
  29. 29.
    Kudlicki W, Coffman A, Kramer G, Hardesty B (1997) Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des 2:101–108. doi: 10.1016/S1359-0278(97)00014-X PubMedCrossRefGoogle Scholar
  30. 30.
    Kukreja RC, Ockaili R, Salloum F, Xi L (2003) Sildenafil-induced cardioprotection in rabbits. Cardiovasc Res 60:700–701. doi: 10.1016/j.cardiores.2003.10.002 PubMedCrossRefGoogle Scholar
  31. 31.
    Lee DI, Vahebi S, Tocchetti CG, Barouch LA, Solaro RJ, Takimoto E, Kass DA (2010) PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res Cardiol 105:337–347. doi: 10.1007/s00395-010-0084-5 PubMedCrossRefGoogle Scholar
  32. 32.
    Li QF, Spinelli AM, Tang DD (2009) Cdc42GAP, reactive oxygen species, and the vimentin network. Am J Physiol Cell Physiol 297:C299–C309. doi: 10.1152/ajpcell.00037.2009 PubMedCrossRefGoogle Scholar
  33. 33.
    Li QF, Spinelli AM, Wang R, Anfinogenova Y, Singer HA, Tang DD (2006) Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling. J Biol Chem 281:34716–34724. doi: 10.1074/jbc.M607715200 PubMedCrossRefGoogle Scholar
  34. 34.
    Liu X, Takeda N, Dhalla NS (1997) Myosin light-chain phosphorylation in diabetic cardiomyopathy in rats. Metabolism 46:71–75. doi: 10.1016/S0026-0495(97)90171-2 PubMedCrossRefGoogle Scholar
  35. 35.
    Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM (2003) Vimentin is secreted by activated macrophages. Nat Cell Biol 5:59–63. doi: 10.1038/ncb898 PubMedCrossRefGoogle Scholar
  36. 36.
    Nagy O, Hajnal A, Parratt JR, Vegh A (2004) Sildenafil (Viagra) reduces arrhythmia severity during ischaemia 24 h after oral administration in dogs. Br J Pharmacol 141:549–551. doi: 10.1038/sj.bjp.0705658 PubMedCrossRefGoogle Scholar
  37. 37.
    Ockaili R, Salloum F, Hawkins J, Kukreja RC (2002) Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 283:H1263–H1269. doi: 10.1152/ajpheart.00324.2002 PubMedGoogle Scholar
  38. 38.
    Park Y, Yang JY, Zhang HR, Chen XN, Zhang CH (2011) Effect of PAR2 in regulating TNF-alpha and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111–123. doi: 10.1007/s00395-010-0129-9 PubMedCrossRefGoogle Scholar
  39. 39.
    Paulson DJ, Gupta M, Zak R, Zhao J (1992) Effects of exercise training and diabetes on cardiac myosin heavy chain composition. Mol Cell Biochem 117:175–179. doi: 10.1016/0022-2828(91)91548-6 PubMedCrossRefGoogle Scholar
  40. 40.
    Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, DeFronzo RA, Jenkinson CP, Mandarino LJ (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280:10290–10297. doi: 10.1074/jbc.M408985200 PubMedCrossRefGoogle Scholar
  41. 41.
    Richter W, Xie M, Scheitrum C, Krall J, Movsesian MA, Conti M (2011) Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol 106:249–262. doi: 10.1007/s00395-010-0138-8 PubMedCrossRefGoogle Scholar
  42. 42.
    Salloum F, Yin C, Xi L, Kukreja RC (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92:595–597. doi: 10.1161/01.RES.0000066853.09821.98 PubMedCrossRefGoogle Scholar
  43. 43.
    Salloum FN, Abbate A, Das A, Houser JE, Mudrick CA, Qureshi IZ, Hoke NN, Roy SK, Brown WR, Prabhakar S, Kukreja RC (2008) Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol 294:H1398–H1406. doi: 10.1152/ajpheart.91438.2007 PubMedCrossRefGoogle Scholar
  44. 44.
    Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA, Toldo S, Kukreja RC (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase G-dependent generation of hydrogen sulfide. Circulation 120:S31–S36. doi: 10.1161/CIRCULATIONAHA.108.843979 PubMedCrossRefGoogle Scholar
  45. 45.
    Schlossarek S, Englmann DR, Sultan KR, Sauer M, Eschenhagen T, Carrier L (2012) Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy. Basic Res Cardiol 107:1–13. doi: 10.1007/s00395-011-0235-3 CrossRefGoogle Scholar
  46. 46.
    Sesti C, Florio V, Johnson EG, Kloner RA (2007) The phosphodiesterase-5 inhibitor tadalafil reduces myocardial infarct size. Int J Impot Res 19:55–61. doi: 10.1038/sj.ijir.3901497 PubMedCrossRefGoogle Scholar
  47. 47.
    Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, Epstein PN (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 287:E896–E905. doi: 10.1152/ajpendo.00047.2004 PubMedCrossRefGoogle Scholar
  48. 48.
    Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs no causal role for risk activation. Circ Res 104:15–18. doi: 10.1161/CIRCRESAHA.108.186429 PubMedCrossRefGoogle Scholar
  49. 49.
    Spector KS (1998) Diabetic cardiomyopathy. Clin Cardiol 21:885–887. doi: 10.1002/clc.4960211205 PubMedCrossRefGoogle Scholar
  50. 50.
    Stelzer JE, Brickson SL, Locher MR, Moss RL (2007) Role of myosin heavy chain composition in the stretch activation response of rat myocardium. J Physiol 579:161–173. doi: 10.1113/jphysiol.2006.119719 PubMedCrossRefGoogle Scholar
  51. 51.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222. doi: 10.1038/nm1175 PubMedCrossRefGoogle Scholar
  52. 52.
    Turko IV, Murad F (2003) Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem 278:35844–35849. doi: 10.1074/jbc.M303139200 PubMedCrossRefGoogle Scholar
  53. 53.
    Tziakas DN, Chalikias GK, Kaski JC (2005) Epidemiology of the diabetic heart. Coron Artery Dis 16(Suppl 1):S3–S10. doi: 10.1097/00019501-200511001-00002 PubMedCrossRefGoogle Scholar
  54. 54.
    Volz HC, Seidel C, Laohachewin D, Kaya Z, Muller OJ, Pleger ST, Lasitschka F, Bianchi ME, Remppis A, Bierhaus A, Katus HA, Andrassy M (2010) HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res Cardiol 105:805–820. doi: 10.1007/s00395-010-0114-3 PubMedCrossRefGoogle Scholar
  55. 55.
    Walker CA, Spinale FG (1999) The structure and function of the cardiac myocyte: a review of fundamental concepts. J Thorac Cardiovasc Surg 118:375–382. doi: 10.1016/S0022-5223(99)70233-3 PubMedCrossRefGoogle Scholar
  56. 56.
    Wang R, Li QF, Anfinogenova Y, Tang DD (2007) Dissociation of Crk-associated substrate from the vimentin network is regulated by p21-activated kinase on ACh activation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 292:L240–L248. doi: 10.1152/ajplung.00199.2006 PubMedCrossRefGoogle Scholar
  57. 57.
    Wang X, Li Q, Adhikari N, Hall JL (2006) A role for muscle LIM protein (MLP) in vascular remodeling. J Mol Cell Cardiol 40:503–509. doi: 10.1016/j.yjmcc.2006.01.005 PubMedCrossRefGoogle Scholar
  58. 58.
    Watts GF, Chew KK, Stuckey BG (2007) The erectile-endothelial dysfunction nexus: new opportunities for cardiovascular risk prevention. Nat Clin Pract Cardiovasc Med 4:263–273. doi: 10.1038/ncpcardio0861 PubMedCrossRefGoogle Scholar
  59. 59.
    Xi L, Zhu SG, Hobbs DC, Kukreja RC (2011) Identification of protein targets underlying dietary nitrate-induced protection against doxorubicin cardiotoxicity. J Cell Mol Med 15:2512–2524. doi: 10.1111/j.1582-4934.2011.01257.x PubMedCrossRefGoogle Scholar
  60. 60.
    Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y (2011) The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 106:925–952. doi: 10.1007/s00395-011-0216-6 PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang H, Dellsperger KC, Zhang C (2012) The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol 107:1–11. doi: 10.1007/s00395-011-0237-1 Google Scholar
  62. 62.
    Zhu SG, Xi L, Kukreja RC (2011) Type 2 diabetic obese db/db mice are refractory to myocardial ischemic postconditioning in vivo: potential role for Hsp20, F1-ATPase δ, and Echs1. J Cell Mol Med doi: 10.1111/j.1582-4934.2011.01376.x

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Internal MedicineVCU Pauley Heart Center, Virginia Commonwealth University Medical CenterRichmondUSA

Personalised recommendations