Basic Research in Cardiology

, Volume 106, Issue 6, pp 1069–1085 | Cite as

Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR

  • Deepmala Agarwal
  • Michael A. Welsch
  • Jeffrey N. Keller
  • Joseph FrancisEmail author
Original Contribution


Recently, exercise has been recommended as a part of lifestyle modification for all hypertensive patients; however, the precise mechanisms of its effects on hypertension are largely unknown. Therefore, this study aimed to investigate the mechanisms within the brain that can influence exercise-induced effects in an animal model of human essential hypertension. Young normotensive WKY rats and SHR were given moderate-intensity exercise for 16 weeks. Blood pressure was measured bi-weekly by tail-cuff method. Animals were then euthanized; paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM), important cardiovascular regulatory centers in the brain, were collected and analyzed by real-time RT-PCR, Western blot, EIA, and fluorescent microscopy. Exercise of 16-week duration attenuated systolic, diastolic, and mean arterial pressure in SHR. Sedentary SHR exhibited increased pro-inflammatory cytokines (PICs) and decreased anti-inflammatory IL-10 levels in the PVN and RVLM. Furthermore, SHRsed rats exhibited elevated levels of ACE, AT1R, and decreased levels of ACE2 and receptor Mas in the PVN and RVLM. Chronic exercise not only prevented the increase in PICs (TNF-α, IL-1β), ACE, and AT1R protein expression in the brain of SHR, but also dramatically upregulated IL-10, ACE2, and Mas receptor expression in SHR. In addition, these changes were associated with reduced plasma AngII levels, reduced neuronal activity, reduced NADPH-oxidase subunit gp91phox and inducible NO synthase in trained SHRs indicating reduced oxidative stress. These results suggest that chronic exercise not only attenuates PICs and the vasoconstrictor axis of the RAS but also improves the anti-inflammatory defense mechanisms and vasoprotective axis of the RAS in the brain, which, at least in part, explains the blood pressure-lowering effects of exercise in hypertension.


Exercise Cytokines Angiotensin Hypertension Oxidative stress Brain 



The authors thank Sherry Ring for sectioning the tissue samples. This work was supported by National Heart, Lung, and Blood Institute Grant HL-80544 to Joseph Francis.

Conflict of interest

None declared.


  1. 1.
    Abramson JL, Vaccarino V (2002) Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 162:1286–1292. doi: ioi10476 PubMedCrossRefGoogle Scholar
  2. 2.
    Adams V, Linke A, Krankel N, Erbs S, Gielen S, Mobius-Winkler S, Gummert JF, Mohr FW, Schuler G, Hambrecht R (2005) Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111:555–562. doi: 10.1161/01.CIR.0000154560.88933.7E PubMedCrossRefGoogle Scholar
  3. 3.
    Agarwal D, Haque M, Sriramula S, Mariappan N, Pariaut R, Francis J (2009) Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension 54:1393–1400. doi: 10.1161/HYPERTENSIONAHA.109.135459 PubMedCrossRefGoogle Scholar
  4. 4.
    Bai Y, Jabbari B, Ye S, Campese VM, Vaziri ND (2009) Regional expression of NAD(P)H oxidase and superoxide dismutase in the brain of rats with neurogenic hypertension. Am J Nephrol 29:483–492. doi: 10.1159/000178817 PubMedCrossRefGoogle Scholar
  5. 5.
    Block CH, Santos RA, Brosnihan KB, Ferrario CM (1988) Immunocytochemical localization of angiotensin-(1–7) in the rat forebrain. Peptides 9:1395–1401. doi: 10.1016/0196-9781(88)90208-2 PubMedCrossRefGoogle Scholar
  6. 6.
    Boissiere J, Eder V, Machet MC, Courteix D, Bonnet P (2008) Moderate exercise training does not worsen left ventricle remodeling and function in untreated severe hypertensive rats. J Appl Physiol 104:321–327. doi: 10.1152/japplphysiol.00442.2007 PubMedCrossRefGoogle Scholar
  7. 7.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560–2572. doi: 10.1001/jama.289.19.2560 PubMedCrossRefGoogle Scholar
  8. 8.
    Ciampone S, Borges R, de Lima IP, Mesquita FF, Cambiucci EC, Gontijo JA (2011) Long-term exercise attenuates blood pressure responsiveness and modulates kidney angiotensin II signalling and urinary sodium excretion in SHR. J Renin Angiotensin Aldosterone Syst doi: 10.1177/1470320311408750
  9. 9.
    Danilczyk U, Penninger JM (2006) Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 98:463–471. doi: 10.1161/01.RES.0000205761.22353.5f PubMedCrossRefGoogle Scholar
  10. 10.
    Das UN (2004) Anti-inflammatory nature of exercise. Nutrition 20:323–326. doi: 10.1016/j.nut.2003.11.017 PubMedCrossRefGoogle Scholar
  11. 11.
    Das UN (1994) Beneficial effect of eicosapentaenoic and docosahexaenoic acids in the management of systemic lupus erythematosus and its relationship to the cytokine network. Prostaglandins Leukot Essent Fatty Acids 51:207–213. doi: 10.1016/0952-3278(94)90136-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E (2006) Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48:787–796. doi: 10.1161/01.HYP.0000242642.42177.49 PubMedCrossRefGoogle Scholar
  13. 13.
    Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289:1799–1804. doi: 10.1001/jama.289.14.1799 PubMedCrossRefGoogle Scholar
  14. 14.
    Filho AG, Ferreira AJ, Santos SH, Neves SR, Silva Camargos ER, Becker LK, Belchior HA, Dias-Peixoto MF, Pinheiro SV, Santos RA (2008) Selective increase of angiotensin(1–7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Exp Physiol 93:589–598. doi: 10.1113/expphysiol.2007.014293 PubMedGoogle Scholar
  15. 15.
    Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker IH (2005) Simvastatin therapy normalizes sympathetic neural control in experimental heart failure: roles of angiotensin II type 1 receptors and NAD(P)H oxidase. Circulation 112:1763–1770. doi: 10.1161/CIRCULATIONAHA.105.552174 PubMedCrossRefGoogle Scholar
  16. 16.
    Gao L, Wang W, Liu D, Zucker IH (2007) Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 115:3095–3102. doi: 10.1161/CIRCULATIONAHA.106.677989 PubMedCrossRefGoogle Scholar
  17. 17.
    Garlie JB, Hamid T, Gu Y, Ismahil MA, Chandrasekar B, Prabhu SD (2011) Tumor necrosis factor receptor 2 signaling limits beta-adrenergic receptor-mediated cardiac hypertrophy in vivo. Basic Res Cardiol doi: 10.1007/s00395-011-0196-6
  18. 18.
    Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP (2001) Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 153:242–250. doi: 10.1093/aje/153.3.242 PubMedCrossRefGoogle Scholar
  19. 19.
    Giannopoulou I, Fernhall B, Carhart R, Weinstock RS, Baynard T, Figueroa A, Kanaley JA (2005) Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism 54:866–875. doi: 10.1016/j.metabol.2005.01.033 PubMedCrossRefGoogle Scholar
  20. 20.
    Graham DA, Rush JW (2004) Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol 96:2088–2096. doi: 10.1152/japplphysiol.01252.2003 PubMedCrossRefGoogle Scholar
  21. 21.
    Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J (2011) Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 106:273–286. doi: 10.1007/s00395-010-0146-8 PubMedCrossRefGoogle Scholar
  22. 22.
    Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346. doi: 10.1038/nrn1902 PubMedCrossRefGoogle Scholar
  23. 23.
    Heusch G, Schulz R (2011) A radical view on the contractile machinery in human heart failure. J Am Coll Cardiol 57:310–312. doi: 10.1016/j.jacc.2010.06.057 PubMedCrossRefGoogle Scholar
  24. 24.
    Horn EM, Shonis CA, Holzwarth MA, Waldrop TG (1998) Decrease in glutamic acid decarboxylase level in the hypothalamus of spontaneously hypertensive rats. J Hypertens 16:625–633. doi: 10.1097/00004872-199816050-00010 PubMedCrossRefGoogle Scholar
  25. 25.
    Jennings JR, Zanstra Y (2009) Is the brain the essential in hypertension? Neuroimage 47:914–921. doi: 10.1016/j.neuroimage.2009.04.072 PubMedCrossRefGoogle Scholar
  26. 26.
    Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, Yan N, Guo Z, Francis J (2009) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746. doi: 10.1093/cvr/cvp160 PubMedCrossRefGoogle Scholar
  27. 27.
    Kang YM, Wang Y, Yang LM, Elks C, Cardinale J, Yu XJ, Zhao XF, Zhang J, Zhang LH, Yang ZM, Francis J (2010) TNF-alpha in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku J Exp Med 222:251–263. doi: JST.JSTAGE/tjem/222.251 PubMedCrossRefGoogle Scholar
  28. 28.
    Kang YM, Zhang AQ, Zhao XF, Cardinale JP, Elks C, Cao XM, Zhang ZW, Francis J (2011) Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Res Cardiol 106:473–483. doi: 10.1007/s00395-011-0155-2 PubMedCrossRefGoogle Scholar
  29. 29.
    Kar S, Gao L, Zucker IH (2010) Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing-induced heart failure. J Appl Physiol 108:923–932. doi: 10.1152/japplphysiol.00840.2009 PubMedCrossRefGoogle Scholar
  30. 30.
    Kemi OJ, Haram PM, Loennechen JP, Osnes JB, Skomedal T, Wisloff U, Ellingsen O (2005) Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 67:161–172. doi: 10.1016/j.cardiores.2005.03.010 PubMedCrossRefGoogle Scholar
  31. 31.
    Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi: 10.1016/j.pharmthera.2010.05.002 PubMedCrossRefGoogle Scholar
  32. 32.
    Kohlstedt K, Trouvain C, Namgaladze D, Fleming I (2011) Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype. Basic Res Cardiol 106:205–215. doi: 10.1007/s00395-010-0137-9 PubMedCrossRefGoogle Scholar
  33. 33.
    Kramer JM, Plowey ED, Beatty JA, Little HR, Waldrop TG (2000) Hypothalamus, hypertension, and exercise. Brain Res Bull 53:77–85. doi: 10.1016/S0361-9230(00)00311-7 PubMedCrossRefGoogle Scholar
  34. 34.
    Li QX, Xiong ZY, Hu BP, Tian ZJ, Zhang HF, Gou WY, Wang HC, Gao F, Zhang QJ (2009) Aging-associated insulin resistance predisposes to hypertension and its reversal by exercise: the role of vascular vasorelaxation to insulin. Basic Res Cardiol 104:269–284. doi: 10.1007/s00395-008-0754-8 PubMedCrossRefGoogle Scholar
  35. 35.
    Liu JL, Kulakofsky J, Zucker IH (2002) Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. J Appl Physiol 92:2403–2408. doi: 10.1152/japplphysiol.00039.2002 PubMedGoogle Scholar
  36. 36.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:e46–e215. doi: 10.1161/CIRCULATIONAHA.109.192667 PubMedCrossRefGoogle Scholar
  37. 37.
    Lu Y, Chen J, Yin X, Zhao H (2009) Angiotensin II receptor 1 involved in the central pressor response induced by interleukin-1 beta in the paraventricular nucleus. Neurol Res 31:420–424. doi: 10.1179/174313208X353677 PubMedCrossRefGoogle Scholar
  38. 38.
    Marfella R, Esposito K, Siniscalchi M, Cacciapuoti F, Giugliano F, Labriola D, Ciotola M, Di Palo C, Misso L, Giugliano D (2004) Effect of weight loss on cardiac synchronization and proinflammatory cytokines in premenopausal obese women. Diabetes Care 27:47–52. doi: 10.2337/diacare.27.1.47 PubMedCrossRefGoogle Scholar
  39. 39.
    Mattusch F, Dufaux B, Heine O, Mertens I, Rost R (2000) Reduction of the plasma concentration of C-reactive protein following 9 months of endurance training. Int J Sports Med 21:21–24. doi: 10.1055/s-2000-8852 PubMedCrossRefGoogle Scholar
  40. 40.
    Mayorov DN, Head GA, De Matteo R (2004) Tempol attenuates excitatory actions of angiotensin II in the rostral ventrolateral medulla during emotional stress. Hypertension 44:101–106. doi: 10.1161/01.HYP.0000131290.12255.04 PubMedCrossRefGoogle Scholar
  41. 41.
    Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97. doi: 10.1152/ajpcell.00287.2006 PubMedCrossRefGoogle Scholar
  42. 42.
    Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106:527–538. doi: 10.1007/s00395-011-0179-7 PubMedCrossRefGoogle Scholar
  43. 43.
    Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T (2009) Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation 119:978–986. doi: 10.1161/CIRCULATIONAHA.108.824730 PubMedCrossRefGoogle Scholar
  44. 44.
    Nomoto T, Okada T, Shimazaki K, Yoshioka T, Nonaka-Sarukawa M, Ito T, Takeuchi K, Katsura KI, Mizukami H, Kume A, Ookawara S, Ikeda U, Katayama Y, Ozawa K (2009) Systemic delivery of IL-10 by an AAV vector prevents vascular remodeling and end-organ damage in stroke-prone spontaneously hypertensive rat. Gene Ther 16:383–391. doi: 10.1038/gt.2008.151 PubMedCrossRefGoogle Scholar
  45. 45.
    Nonaka-Sarukawa M, Okada T, Ito T, Yamamoto K, Yoshioka T, Nomoto T, Hojo Y, Shimpo M, Urabe M, Mizukami H, Kume A, Ikeda U, Shimada K, Ozawa K (2008) Adeno-associated virus vector-mediated systemic interleukin-10 expression ameliorates hypertensive organ damage in Dahl salt-sensitive rats. J Gene Med 10:368–374. doi: 10.1002/jgm.1166 PubMedCrossRefGoogle Scholar
  46. 46.
    Nunes RB, Tonetto M, Machado N, Chazan M, Heck TG, Veiga AB, Dall’Ago P (2008) Physical exercise improves plasmatic levels of IL-10, left ventricular end-diastolic pressure, and muscle lipid peroxidation in chronic heart failure rats. J Appl Physiol 104:1641–1647. doi: 10.1152/japplphysiol.00062.2008 PubMedCrossRefGoogle Scholar
  47. 47.
    Ogihara CA, Schoorlemmer GH, Levada AC, Pithon-Curi TC, Curi R, Lopes OU, Colombari E, Sato MA (2010) Exercise changes regional vascular control by commissural NTS in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 299:R291–R297. doi: 10.1152/ajpregu.00055.2009 PubMedCrossRefGoogle Scholar
  48. 48.
    Peeters AC, Netea MG, Janssen MC, Kullberg BJ, Van der Meer JW, Thien T (2001) Pro-inflammatory cytokines in patients with essential hypertension. Eur J Clin Invest 31:31–36. doi: 10.1046/j.1365-2362.2001.00743.x PubMedCrossRefGoogle Scholar
  49. 49.
    Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162. doi: 10.1152/japplphysiol.00164.2004 PubMedCrossRefGoogle Scholar
  50. 50.
    Phillips MI, de Oliveira EM (2008) Brain renin angiotensin in disease. J Mol Med 86:715–722. doi: 10.1007/s00109-008-0331-5 PubMedCrossRefGoogle Scholar
  51. 51.
    Rush JW, Turk JR, Laughlin MH (2003) Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol 284:H1378–H1387. doi: 10.1152/ajpheart.00190.2002 PubMedGoogle Scholar
  52. 52.
    Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357. doi: 10.1161/CIRCULATIONAHA.108.846105 PubMedCrossRefGoogle Scholar
  53. 53.
    Shi P, Raizada MK, Sumners C (2010) Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharmacol Physiol 37:e52–e57. doi: 10.1111/j.1440-1681.2009.05234.x PubMedCrossRefGoogle Scholar
  54. 54.
    Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi: 10.1007/s00395-011-0190-z PubMedCrossRefGoogle Scholar
  55. 55.
    Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S (1999) Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA 281:1722–1727. doi: 10.1001/jama.281.18.1722 PubMedCrossRefGoogle Scholar
  56. 56.
    Sriramula S, Cardinale JP, Lazartigues E, Francis J (2011) ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res 92:401–408. doi: 10.1093/cvr/cvr242 PubMedCrossRefGoogle Scholar
  57. 57.
    Sriramula S, Haque M, Majid DS, Francis J (2008) Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51:1345–1351. doi: 10.1161/HYPERTENSIONAHA.107.102152 PubMedCrossRefGoogle Scholar
  58. 58.
    Sun MW, Qian FL, Wang J, Tao T, Guo J, Wang L, Lu AY, Chen H (2008) Low-intensity voluntary running lowers blood pressure with simultaneous improvement in endothelium-dependent vasodilatation and insulin sensitivity in aged spontaneously hypertensive rats. Hypertens Res 31:543–552. doi: 10.1291/hypres.31.543 PubMedCrossRefGoogle Scholar
  59. 59.
    Tiyerili V, Zimmer S, Jung S, Wassmann K, Naehle CP, Lutjohann D, Zimmer A, Nickenig G, Wassmann S (2010) CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res Cardiol 105:465–477. doi: 10.1007/s00395-010-0090-7 PubMedCrossRefGoogle Scholar
  60. 60.
    Ufnal M, Zera T, Szczepanska-Sadowska E (2005) Blockade of angiotensin II AT1 receptors inhibits pressor action of centrally administered interleukin-1beta in Sprague Dawley rats. Neuropeptides 39:581–585. doi: 10.1016/j.npep.2005.08.001 PubMedCrossRefGoogle Scholar
  61. 61.
    Van Craenenbroeck EM, Hoymans VY, Beckers PJ, Possemiers NM, Wuyts K, Paelinck BP, Vrints CJ, Conraads VM (2010) Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol 105:665–676. doi: 10.1007/s00395-010-0105-4 PubMedCrossRefGoogle Scholar
  62. 62.
    Xia H, Lazartigues E (2010) Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep 12:170–175. doi: 10.1007/s11906-010-0105-7 PubMedCrossRefGoogle Scholar
  63. 63.
    Zamo FS, Barauna VG, Chiavegatto S, Irigoyen MC, Oliveira EM (2011) The renin-angiotensin system is modulated by swimming training depending on the age of spontaneously hypertensive rats. Life Sci 89:93–99. doi: 10.1016/j.lfs.2011.05.004 PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang ZH, Wei SG, Francis J, Felder RB (2003) Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol 284:R916–R927. doi: 10.1152/ajpregu.00406.2002 PubMedGoogle Scholar
  65. 65.
    Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, D’Andrea F, Molinari AM, Giugliano D (2002) Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over 1 year. Circulation 105:804–809. doi: 10.1161/hc0702.104279 PubMedCrossRefGoogle Scholar
  66. 66.
    Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL (2004) Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res 95:210–216. doi: 10.1161/01.RES.0000135483.12297.e4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Deepmala Agarwal
    • 1
  • Michael A. Welsch
    • 2
  • Jeffrey N. Keller
    • 3
  • Joseph Francis
    • 1
    Email author
  1. 1.Comparative Biomedical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeUSA
  2. 2.Department of KinesiologyLouisiana State UniversityBaton RougeUSA
  3. 3.Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeUSA

Personalised recommendations