Basic Research in Cardiology

, Volume 106, Issue 6, pp 1259–1268 | Cite as

The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia

  • Marisol Ruiz-Meana
  • Javier Inserte
  • Celia Fernandez-Sanz
  • Victor Hernando
  • Elisabet Miro-Casas
  • Ignasi Barba
  • David Garcia-DoradoEmail author
Original Contribution


Mitochondrial permeability transition (MPT) is critical in cardiomyocyte death during reperfusion but it is not the only mechanism responsible for cell injury. The objectives of the study is to investigate the role of the duration of myocardial ischemia on mitochondrial integrity and cardiomyocyte death. Mitochondrial membrane potential (ΔΨm, JC-1) and MPT (calcein) were studied in cardiomyocytes from wild-type and cyclophilin D (CyD) KO mice refractory to MPT, submitted to simulated ischemia and 10 min reperfusion. Reperfusion after 15 min simulated ischemia induced a rapid recovery of ΔΨm, extreme cell shortening (contracture) and mitochondrial calcein release, and CyD ablation did not affect these changes or cell death. However, when reperfusion was performed after 25 min simulated ischemia, CyD ablation improved ΔΨm recovery and reduced calcein release and cell death (57.8 ± 4.9% vs. 77.3 ± 4.8%, P < 0.01). In a Langendorff system, CyD ablation increased infarct size after 30 min of ischemia (61.3 ± 6.4% vs. 45.3 ± 4.0%, P = 0.02) but reduced it when ischemia was prolonged to 60 min (52.8 ± 8.1% vs. 87.6 ± 3.7%, P < 0.01). NMR spectroscopy in rat hearts showed a rapid recovery of phosphocreatine after 30 min ischemia followed by a marked decay associated with contracture and LDH release, that were preventable with contractile blockade but not with cyclosporine A. In contrast, after 50 min ischemia, phosphocreatine recovery was impaired even with contractile blockade (65.2 ± 4% at 2 min), and cyclosporine A reduced contracture, LDH release and infarct size (52.1 ± 4.2% vs. 82.8 ± 3.6%, P < 0.01). In conclusion, the duration of ischemia critically determines the importance of MPT on reperfusion injury. Mechanisms other than MPT may play an important role in cell death after less severe ischemia.


Reperfusion Contracture Mitochondria 



This study was supported by the Spanish Ministry of Science and Instituto de Salud Carlos III (RETICS-RECAVA RD06/0014/0025; CICYT SAF/2008-03067, FIS-PI080238 and PS09/02034). Ignasi Barba is recipient of a Ramon y Cajal fellowship.

Conflict of interest


Supplementary material

395_2011_225_MOESM1_ESM.ppt (2.2 mb)
Supplementary material 1 (PPT 2202 kb)


  1. 1.
    Abdallah Y, Iraqi W, Said M, Kasseckert SA, Shahzad T, Erdogan A, Neuhof C, Gunduz D, Schluter KD, Piper HM, Reusch HP, Ladilov Y (2010) Interplay between Ca(2+) cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. J Cell Mol Med. doi: 10.1111/j.1582-4934.2010.01249.x
  2. 2.
    Altschuld RA, Wenger WC, Lamka KG, Kindig OR, Capen CC, Mizuhira V, Vander Heide RS, Brierley GP (1985) Structural and functional properties of adult rat heart myocytes lysed with digitonin. J Biol Chem 260:14325–14334PubMedGoogle Scholar
  3. 3.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. doi: 10.1038/nature03434 PubMedCrossRefGoogle Scholar
  4. 4.
    Barba I, Jaimez-Auguets E, Rodriguez-Sinovas A, Garcia-Dorado D (2007) 1H NMR-based metabolomic identification of at-risk areas after myocardial infarction in swine. MAGMA 20:265–271. doi: 10.1007/s10334-007-0097-8 PubMedCrossRefGoogle Scholar
  5. 5.
    Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561. doi: 10.1074/jbc.C500089200 PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen MV, Yang XM, Downey JM (2008) Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 103:464–471. doi: 10.1007/s00395-008-0737-9 PubMedCrossRefGoogle Scholar
  7. 7.
    Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276:2571–2575. doi: 10.1074/jbc.M006825200 PubMedCrossRefGoogle Scholar
  8. 8.
    Duchen MR, McGuinness O, Brown LA, Crompton M (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27:1790–1794. doi: 10.1093/cvr/27.10.1790 PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrera R, Benhabbouche S, Bopassa JC, Li B, Ovize M (2009) One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model. Cardiovasc Drugs Ther 23:327–331. doi: 10.1007/s10557-009-6176-5 PubMedCrossRefGoogle Scholar
  10. 10.
    Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, Sardella G, Mancone M, Catalano C, Fedele F, Passariello R, Bogaert J, Agati L (2009) Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. J Am Coll Cardiol 54:2145–2153. doi: 10.1016/j.jacc.2009.08.024 PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Dorado D, Ruiz-Meana M, Piper HM (2009) Lethal reperfusion injury in acute myocardial infarction: facts and unresolved issues. Cardiovasc Res 83:165–168. doi: 10.1093/cvr/cvp185 PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia-Dorado D, Theroux P, Duran JM, Solares J, Alonso J, Sanz E, Munoz R, Elizaga J, Botas J, Fernandez-Aviles F (1992) Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85:1160–1174. doi: 10.1161/01.CIR.85.3.1160 PubMedGoogle Scholar
  13. 13.
    Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117:2761–2768. doi: 10.1161/CIRCULATIONAHA.107.755066 PubMedCrossRefGoogle Scholar
  14. 14.
    Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469. doi: 10.1006/jmcc.1993.1162 PubMedCrossRefGoogle Scholar
  15. 15.
    Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98PubMedGoogle Scholar
  16. 16.
    Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi: 10.1007/s00395-010-0121-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 60:617–625. doi: 10.1016./j.cardiores.2003.09.025 PubMedCrossRefGoogle Scholar
  18. 18.
    Heusch G (2004) Postconditioning: old wine in a new bottle? J Am Coll Cardiol 44:1111–1112. doi: 10.1016/j.jacc.2004.06.013 PubMedCrossRefGoogle Scholar
  19. 19.
    Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154. doi: 10.1007/s00395-009-0080-9 PubMedCrossRefGoogle Scholar
  20. 20.
    Iliodromitis EK, Downey JM, Heusch G, Kremastinos DT (2009) What is the optimal postconditioning algorithm? J Cardiovasc Pharmacol Ther 14:269–273. doi: 10.1177/1074248409344328 PubMedCrossRefGoogle Scholar
  21. 21.
    Inserte J, Barba I, Poncelas-Nozal M, Hernando V, Agullo L, Ruiz-Meana M, Garcia-Dorado D (2011) cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J Mol Cell Cardiol 50:903–909. doi: 10.1016/j.yjmcc.2011.02.013 PubMedCrossRefGoogle Scholar
  22. 22.
    Inserte J, Barrabes JA, Hernando V, Garcia-Dorado D (2009) Orphan targets for reperfusion injury. Cardiovasc Res 83:169–178. doi: 10.1093/cvr/cvp109 PubMedCrossRefGoogle Scholar
  23. 23.
    Karlsson LO, Zhou AX, Larsson E, Astrom-Olsson K, Mansson C, Akyurek LM, Grip L (2010) Cyclosporine does not reduce myocardial infarct size in a porcine ischemia-reperfusion model. J Cardiovasc Pharmacol Ther 15:182–189. doi: 10.1177/1074248410362074 PubMedCrossRefGoogle Scholar
  24. 24.
    Ladilov Y, Efe O, Schafer C, Rother B, Kasseckert S, Abdallah Y, Meuter K, Dieter SK, Piper HM (2003) Reoxygenation-induced rigor-type contracture. J Mol Cell Cardiol 35:1481–1490PubMedCrossRefGoogle Scholar
  25. 25.
    Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423. doi: 10.1093/cvr/cvq129 PubMedCrossRefGoogle Scholar
  26. 26.
    Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734. doi: 10.1016/S0006-3495(99)77239-54 PubMedCrossRefGoogle Scholar
  27. 27.
    Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, Andre-Fouet X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481. doi: 10.1056/NEJMoa071142 PubMedCrossRefGoogle Scholar
  28. 28.
    Piper HM, Abdallah Y, Schafer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371371. doi: 10.1016/j.cardiores.2003.12.012 PubMedCrossRefGoogle Scholar
  29. 29.
    Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300PubMedCrossRefGoogle Scholar
  30. 30.
    Quayle JM, Turner MR, Burrell HE, Kamishima T (2006) Effects of hypoxia, anoxia, and metabolic inhibitors on KATP channels in rat femoral artery myocytes. Am J Physiol Heart Circ Physiol 291:H71–H80. doi: 10.1152/ajpheart.01107.2005 PubMedCrossRefGoogle Scholar
  31. 31.
    Rodriguez-Sinovas A, Sanchez JA, Gonzalez-Loyola A, Barba I, Morente M, Aguilar R, Agullo E, Miro-Casas E, Esquerda N, Ruiz-Meana M, Garcia-Dorado D (2010) Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischaemia and preconditioning protection. J Physiol 588:1139–1151. doi: 10.1113/jphysiol.2009.186577 PubMedCrossRefGoogle Scholar
  32. 32.
    Ruiz-Meana M, Abellan A, Miro-Casas E, Agullo E, Garcia-Dorado D (2009) Role of sarcoplasmic reticulum in mitochondrial permeability transition and cardiomyocyte death during reperfusion. Am J Physiol Heart Circ Physiol 297:H1281–H1289. doi: 10.1152/ajpheart.00435.2009 PubMedCrossRefGoogle Scholar
  33. 33.
    Ruiz-Meana M, Abellan A, Miro-Casas E, Garcia-Dorado D (2007) Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102:542–552. doi: 10.1007/s00395-007-0675-y PubMedCrossRefGoogle Scholar
  34. 34.
    Schwartz LM, Lagranha CJ (2006) Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol 290:H1011–H1018. doi: 10.1152/ajpheart.00864.2005 PubMedCrossRefGoogle Scholar
  35. 35.
    Schwarz ER, Somoano Y, Hale SL, Kloner RA (2000) What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat? J Thromb Thrombolysis 10:181–187PubMedCrossRefGoogle Scholar
  36. 36.
    Skyschally A, Schulz R, Heusch G (2010) Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther 24:85–87. doi: 10.1007/s10557-010-6219-y PubMedCrossRefGoogle Scholar
  37. 37.
    Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi: 10.1007/s00395-009-0040-4 PubMedCrossRefGoogle Scholar
  38. 38.
    Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148. doi: 10.1161/CIRCULATIONAHA.105.558122 PubMedCrossRefGoogle Scholar
  39. 39.
    Sumida T, Otani H, Kyoi S, Okada T, Fujiwara H, Nakao Y, Kido M, Imamura H (2005) Temporary blockade of contractility during reperfusion elicits a cardioprotective effect of the p38 MAP kinase inhibitor SB-203580. Am J Physiol Heart Circ Physiol 288:H2726–H2734. doi: 10.1152/ajpheart.01183.2004 PubMedCrossRefGoogle Scholar
  40. 40.
    Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110. doi: 10.1016/j.jacc.2004.05.060 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marisol Ruiz-Meana
    • 1
  • Javier Inserte
    • 1
  • Celia Fernandez-Sanz
    • 1
  • Victor Hernando
    • 1
  • Elisabet Miro-Casas
    • 1
  • Ignasi Barba
    • 1
  • David Garcia-Dorado
    • 1
    Email author
  1. 1.Laboratory of Experimental Cardiology, Vall d’Hebron University Hospital and Research Institute, Universitat Autonoma de BarcelonaBarcelonaSpain

Personalised recommendations