Advertisement

Basic Research in Cardiology

, Volume 106, Issue 6, pp 1247–1257 | Cite as

Determination of the myocardial area at risk with pre- versus post-reperfusion imaging techniques in the pig model

  • Nathan Mewton
  • Stanislas Rapacchi
  • Lionel Augeul
  • René Ferrera
  • Joseph Loufouat
  • Loic Boussel
  • Alejandra Micolich
  • Gilles Rioufol
  • Didier Revel
  • Michel OvizeEmail author
  • Pierre Croisille
Original Contribution

Abstract

The purpose of this study was to compare the accuracy of post-reperfusion cardiac magnetic resonance (CMR) and pre-reperfusion multidetector computed tomography (MDCT) imaging to measure the size of the area at risk (AAR), using pathology as a reference technique in a porcine acute myocardial infarction model. Fifteen pigs underwent balloon-induced coronary artery occlusion for 40 min followed by reperfusion. The AAR was assessed with arterial enhanced MDCT performed during occlusion, while two different T2 weighted (T2W) CMR imaging sequences and the contrast-enhanced (ce-) CMR endocardial surface length (ESL) were performed after 90 min of reperfusion. Animals were euthanized and the AAR was assessed by pathology. Additional measurements of the myocardial water content in the AAR, remote and the AAR border zones were performed. AAR by pathology best correlated with measurements made by MDCT (R 2 = 0.88; p < 0.001) with little bias on Bland–Altman plots (bias 2.5%, SD 6.1% LV area). AAR measurements obtained by T2W STIR, T2W ACUTE sequences or the ESL on ce-CMR showed a fair correlation with pathology (R 2 = 0.72, R 2 = 0.65 and R 2 = 0.69, respectively; all p ≤ 0.001), but significantly overestimated the size of the AAR with important bias (17.4 ± 10.8% LV area; 11.7 ± 11.0% LV area; 13.0 ± 10.3% LV area, respectively). The myocardial water content in the AAR border zones was significantly higher than the remote (82.8 vs. 78.8%; p < 0.001). Our data suggest that post-reperfusion imaging methods overestimated the AAR likely due to the presence of edema outside of the boundaries of the AAR. Pre-reperfusion arterial enhanced MDCT showed the greatest accuracy for the assessment of the AAR.

Keywords

Infarction Reperfusion Area at risk 

Notes

Acknowledgments

Dr. Nathan Mewton was supported by a research grant from the French Federation of Cardiology for this project.

References

  1. 1.
    Abbate A, Bonanno E, Mauriello A, Bussani R, Biondi-Zoccai GG, Liuzzo G, Leone AM, Silvestri F, Dobrina A, Baldi F, Pandolfi F, Biasucci LM, Baldi A, Spagnoli LG, Crea F (2004) Widespread myocardial inflammation and infarct-related artery patency. Circulation 110:46–50. doi: 10.1161/01.CIR.0000133316.92316.81 PubMedCrossRefGoogle Scholar
  2. 2.
    Abdel-Aty H, Cocker M, Meek C, Tyberg JV, Friedrich MG (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53:1194–1201. doi: 10.1016/j.jacc.2008.10.065 PubMedCrossRefGoogle Scholar
  3. 3.
    Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RFJ, Arai AE (2006) Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation 113:1865–1870. doi: 10.1161/CIRCULATIONAHA.105.576025 PubMedCrossRefGoogle Scholar
  4. 4.
    Aletras AH, Kellman P, Derbyshire JA, Arai AE (2008) ACUT2E TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the heart. Magn Reson Med 59:229–235. doi: 10.1002/mrm.21490 PubMedCrossRefGoogle Scholar
  5. 5.
    Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K, Kraitchman DL, Lima JA (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44:2383–2389. doi: 10.1016/j.jacc.2004.09.020 PubMedCrossRefGoogle Scholar
  6. 6.
    Argaud L, Prigent AF, Chalabreysse L, Loufouat J, Lagarde M, Ovize M (2004) Ceramide in the antiapoptotic effect of ischemic preconditioning. Am J Physiol Heart Circ Physiol 286:H246–H251. doi: 10.1152/ajpheart.00638.2003 PubMedCrossRefGoogle Scholar
  7. 7.
    Bijnens B, Sutherland GR (2008) Myocardial oedema: a forgotten entity essential to the understanding of regional function after ischaemia or reperfusion injury. Heart 94:1117–1119. doi: 10.1136/hrt.2007.135392 PubMedCrossRefGoogle Scholar
  8. 8.
    Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sorensen HT, Redington AN, Nielsen TT (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375:727–734. doi: 10.1016/S0140-6736(09)62001-8 PubMedCrossRefGoogle Scholar
  9. 9.
    Breuckmann F, Nassenstein K, Bucher C, Konietzka I, Kaiser G, Konorza T, Naber C, Skyschally A, Gres P, Heusch G, Erbel R, Barkhausen J (2009) Systematic analysis of functional and structural changes after coronary microembolization: a cardiac magnetic resonance imaging study. JACC Cardiovasc Imaging 2:121–130. doi: 10.1016/j.jcmg.2008.10.011 PubMedCrossRefGoogle Scholar
  10. 10.
    Carlsson M, Ubachs JF, Hedstrom E, Heiberg E, Jovinge S, Arheden H (2009) Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography. JACC Cardiovasc Imaging 2:569–576. doi: 10.1016/j.jcmg.2008.11.018 PubMedCrossRefGoogle Scholar
  11. 11.
    Choi SH, Kang JW, Kim ST, Lee BH, Chun EJ, Schuleri KH, Choi SI, Lim TH (2009) Investigation of T2-weighted signal intensity of infarcted myocardium and its correlation with delayed enhancement magnetic resonance imaging in a porcine model with reperfused acute myocardial infarction. Int J Cardiovasc Imaging 25(Suppl 1):111–119. doi: 10.1007/s10554-009-9425-6 PubMedCrossRefGoogle Scholar
  12. 12.
    Dymarkowski S, Ni Y, Miao Y, Bogaert J, Rademakers F, Bosmans H, Marchal G (2002) Value of t2-weighted magnetic resonance imaging early after myocardial infarction in dogs: comparison with bis-gadolinium-mesoporphyrin enhanced T1-weighted magnetic resonance imaging and functional data from cine magnetic resonance imaging. Invest Radiol 37:77–85PubMedCrossRefGoogle Scholar
  13. 13.
    Edwards NC, Routledge H, Steeds RP (2009) T2-weighted magnetic resonance imaging to assess myocardial oedema in ischaemic heart disease. Heart 95:1357–1361. doi: 10.1136/hrt.2009.169961 PubMedCrossRefGoogle Scholar
  14. 14.
    Feiring AJ, Johnson MR, Kioschos JM, Kirchner PT, Marcus ML, White CW (1987) The importance of the determination of the myocardial area at risk in the evaluation of the outcome of acute myocardial infarction in patients. Circulation 75:980–987 (PMID: 3568313) (ISSN: 1524-4539)PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia-Dorado D, Oliveras J, Gili J, Sanz E, Perez-Villa F, Barrabes J, Carreras MJ, Solares J, Soler–Soler J (1993) Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res 27:1462–1469. doi: 10.1093/cvr/27.8.1462 PubMedCrossRefGoogle Scholar
  16. 16.
    George RT, Silva C, Cordeiro MA, DiPaula A, Thompson DR, McCarthy WF, Ichihara T, Lima JA, Lardo AC (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160. doi: 10.1016/j.jacc.2006.04.014 PubMedCrossRefGoogle Scholar
  17. 17.
    Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi: 10.1007/s00395-010-0121-4 PubMedCrossRefGoogle Scholar
  18. 18.
    Heusch G, Skyschally A, Schulz R (2011) The in situ pig heart with regional ischemia/reperfusion—ready for translation. J Mol Cell Cardiol 50:951–963. doi: 10.1016/j.yjmcc.2011.02.016 PubMedCrossRefGoogle Scholar
  19. 19.
    Hoffmann U, Millea R, Enzweiler C, Ferencik M, Gulick S, Titus J, Achenbach S, Kwait D, Sosnovik D, Brady TJ (2004) Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology 231:697–701. doi: 10.1148/radiol.2313030132 PubMedCrossRefGoogle Scholar
  20. 20.
    Inoue S, Murakami Y, Ochiai K, Kitamura J, Ishibashi Y, Kawamitsu H, Sugimura K, Shimada T (1999) The contributory role of interstitial water in Gd-DTPA-enhanced MRI in myocardial infarction. J Magn Reson Imaging 9:215–219. doi: 10.1002/(SICI)1522-2586(199902)9:2<215:AID-JMRI10>3.0.CO;2-# PubMedCrossRefGoogle Scholar
  21. 21.
    Jacquier A, Boussel L, Amabile N, Bartoli JM, Douek P, Moulin G, Paganelli F, Saeed M, Revel D, Croisille P (2008) Multidetector computed tomography in reperfused acute myocardial infarction. Assessment of infarct size and no-reflow in comparison with cardiac magnetic resonance imaging. Invest Radiol 43:773–781. doi: 10.1097/RLI.Ob013e318181c8dd PubMedCrossRefGoogle Scholar
  22. 22.
    Jennings RB, Schaper J, Hill ML, Steenbergen CJ, Reimer KA (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56:262–278 (ISSN: 1524-4571)(PMID: 3971504)PubMedGoogle Scholar
  23. 23.
    Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A, Gunther RW, Kuhl HP (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047. doi: 10.1016/j.jacc.2005.03.035 PubMedCrossRefGoogle Scholar
  24. 24.
    Mahnken AH, Bruners P, Katoh M, Wildberger JE, Gunther RW, Buecker A (2006) Dynamic multi-section CT imaging in acute myocardial infarction: preliminary animal experience. Eur Radiol 16:746–752. doi: 10.1007/s00330-005-0057-5 PubMedCrossRefGoogle Scholar
  25. 25.
    Manrique A, Gerbaud E, Derumeaux G, Cribier A, Bertrand D, Lebon A, Dacher JN (2009) Cardiac magnetic resonance demonstrates myocardial oedema in remote tissue early after reperfused myocardial infarction. Arch Cardiovasc Dis 102:633–639. doi: 10.1016/j.acvd.2009.05.006 PubMedCrossRefGoogle Scholar
  26. 26.
    Mehlhorn U, Geissler HJ, Laine GA, Allen SJ (2001) Myocardial fluid balance. Eur J Cardiothorac Surg 20:1220–1230. doi: 10.1016/S1010-7940(01)01031-4 PubMedCrossRefGoogle Scholar
  27. 27.
    Nassenstein K, Breuckmann F, Bucher C, Kaiser G, Konorza T, Schafer L, Konietzka I, de Greiff A, Heusch G, Erbel R, Barkhausen J (2008) How much myocardial damage is necessary to enable detection of focal late gadolinium enhancement at cardiac MR imaging? Radiology 249:829–835. doi: 10.1148/radiol.2493080457 PubMedCrossRefGoogle Scholar
  28. 28.
    O’Regan DP, Ahmed R, Karunanithy N, Neuwirth C, Tan Y, Durighel G, Hajnal JV, Nadra I, Corbett SJ, Cook SA (2009) Reperfusion hemorrhage following acute myocardial infarction: assessment with T2* mapping and effect on measuring the area at risk. Radiology 250:916–922. doi: 10.1148/radiol.2503081154 PubMedCrossRefGoogle Scholar
  29. 29.
    Ortiz-Perez JT, Meyers SN, Lee DC, Kansal P, Klocke FJ, Holly TA, Davidson CJ, Bonow RO, Wu E (2007) Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. Eur Heart J 28:1750–1758. doi: 10.1093/eurheartj/ehm212 PubMedCrossRefGoogle Scholar
  30. 30.
    Ovize M, Revel D, de Lorgeril M, Pichard JB, Dandis G, Delaye J, Renaud S, Amiel M (1991) Quantitation of reperfused myocardial infarction by Gd-DOTA-enhanced magnetic resonance imaging. An experimental study. Invest Radiol. 26:1065–1070 (ISSN: 0020-9996)(PMID: 1765439)Google Scholar
  31. 31.
    Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423. doi: 10.1093/cvr/cvq129 PubMedCrossRefGoogle Scholar
  32. 32.
    Reimer KA, Jennings RB (1979) The changing anatomic reference base of evolving myocardial infarction. Underestimation of myocardial collateral blood flow and overestimation of experimental anatomic infarct size due to tissue edema, hemorrhage and acute inflammation. Circulation 60:866–876 (ISSN: 1524-4539) (PMID: 476891)PubMedGoogle Scholar
  33. 33.
    Reimer KA, Long JB, Murry CE, Jennings RB (1987) Three-dimensional distribution of collateral blood flow within the anatomic area at risk after circumflex coronary artery occlusion in dogs. Basic Res Cardiol 82:473–485 (PMID: 3426526)PubMedCrossRefGoogle Scholar
  34. 34.
    Ribeiro LG, Hopkins DG, Brandon TA, Reduto LA, Miller RR (1980) Quantification of hyperaemia bordering ischaemic myocardium in experimental myocardial infarction. Cardiovasc Res 14:345–351. doi: 10.1093/cvr/14.6.345 PubMedCrossRefGoogle Scholar
  35. 35.
    Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi: 10.1007/s00395-009-0040-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Ubachs JF, Engblom H, Erlinge D, Jovinge S, Hedstrom E, Carlsson M, Arheden H (2010) Cardiovascular magnetic resonance of the myocardium at risk in acute reperfused myocardial infarction: comparison of T2-weighted imaging versus the circumferential endocardial extent of late gadolinium enhancement with transmural projection. J Cardiovasc Magn Reson 12:18. doi: 10.1186/1532-429X-12-18 PubMedCrossRefGoogle Scholar
  37. 37.
    Wince WB, Kim RJ (2010) Molecular imaging: T2-weighted CMR of the area at risk-a risky business? Nat Rev Cardiol 7:547–549. doi: 10.1038/nrcardio.2010.124 PubMedCrossRefGoogle Scholar
  38. 38.
    Wright J, Adriaenssens T, Dymarkowski S, Desmet W, Bogaert J (2009) Quantification of myocardial area at risk with T2-weighted CMR: comparison with contrast-enhanced CMR and coronary angiography. JACC Cardiovasc Imaging 2:825–831. doi: 10.1016/j.jcmg.2009.02.011 PubMedCrossRefGoogle Scholar
  39. 39.
    Yamashita M, Lee S, Hamasaki S, Nishimoto R, Kajiya T, Toyonaga K, Arima R, Toda H, Ohba I, Otsuji Y, Tei C (2011) Noninvasive evaluation of coronary reperfusion by CT angiography in patients with STEMI. JACC Cardiovasc Imaging 4:141–149. doi: 10.1016/j.jcmg.2010.11.013 PubMedCrossRefGoogle Scholar
  40. 40.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588. doi: 10.1152/ajpheart.01064.2002 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nathan Mewton
    • 1
    • 2
  • Stanislas Rapacchi
    • 3
  • Lionel Augeul
    • 2
  • René Ferrera
    • 2
  • Joseph Loufouat
    • 2
  • Loic Boussel
    • 3
    • 5
  • Alejandra Micolich
    • 3
  • Gilles Rioufol
    • 2
    • 6
  • Didier Revel
    • 3
    • 5
  • Michel Ovize
    • 1
    • 2
    • 4
    Email author
  • Pierre Croisille
    • 3
    • 5
  1. 1.Service d’Explorations Fonctionnelles CardiovasculairesHôpital Louis Pradel, Hospices Civils de LyonLyonFrance
  2. 2.Inserm U1060 (CARMEN)Université Claude Bernard Lyon 1LyonFrance
  3. 3.CREATIS-LRMN, CNRS UMR 5220, INSERM U630Université Claude Bernard Lyon 1LyonFrance
  4. 4.Department of CardiologyHôpital Cardiologique Louis PradelBronFrance
  5. 5.Department of RadiologyHôpital Louis PradelBronFrance
  6. 6.Department of Interventional CardiologyHôpital Louis PradelBronFrance

Personalised recommendations