Basic Research in Cardiology

, Volume 106, Issue 6, pp 1311–1328 | Cite as

Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization

  • Yulong Hu
  • Hanwen Zhang
  • Yan Lu
  • Hui Bai
  • Yiming Xu
  • Xudong Zhu
  • Rongmei Zhou
  • Jingjing BenEmail author
  • Yong Xu
  • Qi ChenEmail author
Original Contribution


Classically (M1) and alternatively (M2) activated macrophage subsets play differential roles in left ventricular remodeling after myocardial infarction (MI). The precise mechanism underlying the regulation of M1/M2 polarization during MI is unknown. We hypothesized that class A scavenger receptor (SR-A), a key modulator of inflammation, may steer macrophage polarization, which in turn influences cardiomyocytes necrosis after MI. MI was induced in wild type (WT) and SR-A deficient (SR-A−/−) mice by left anterior descending coronary artery ligation. Cardiac function deterioration, ventricular dilatation and fibrosis were all exacerbated in SR-A−/− mice following MI compared to WT littermates. Meanwhile, enhanced M1 macrophage polarization was observed in SR-A−/− mice, along with increased production of M1 signature cytokines including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) as demonstrated by immunohistochemistry, flow cytometry, quantitative real-time PCR, and ELISA assays. Moreover, activation of the activated apoptosis signal regulating kinase 1 (ASK1)/p38 mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) signaling pathway was markedly elevated in SR-A−/− animals post-MI. Most importantly, transplantation using bone marrow from SR-A+/+ mice partially restored M1 macrophages and significantly augmented left ventricular fractional shortening in SR-A−/− mice. SR-A attenuated MI-induced cardiac remodeling by suppressing macrophage polarization toward a skewed M1 phenotype, reducing secretion of IL-1β, IL-6, and TNF-α, and dampening the ASK1/p38/NF-κB signaling pathway. Therefore, SR-A may exert a protective effect against MI, which may represent a new interventional target for treatment of post-infarct remodeling and subsequent heart failure.


Myocardial infarction Left ventricular remodeling Macrophage polarization Class A scavenge receptor Necrosis 



This work was supported by National Natural Science Foundation of China Grants (NO. 30730044 and 81070120 to Qi Chen), National Basic Research Program (973) (No. 2011CB503903 to Yong Ji), and National Natural Science Foundation of China (NO.81000118 to Jingjing Ben).


  1. 1.
    Amiel E, Acker JL, Collins RM, Berwin B (2009) Uncoupling scavenger receptor A-mediated phagocytosis of bacteria from endotoxic shock resistance. Infect Immun 77:4567–4573. doi: 10.1128/IAI.00727-09 PubMedCrossRefGoogle Scholar
  2. 2.
    Ben JJ, Gao S, Zhu XD, Zheng Y, Zhuang Y, Bai H, Xu Y, Ji Y, Sha JH, He ZG, Chen Q (2009) Glucose-regulated protein 78 inhibits scavenger receptor A-mediated internalization of acetylated low density lipoprotein. J Mol Cell Cardiol 47:646–655. doi: 10.1016/j.yjmcc.2009.08.011 PubMedCrossRefGoogle Scholar
  3. 3.
    Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261. doi: 10.1093/cvr/cvp033 PubMedCrossRefGoogle Scholar
  4. 4.
    Bramos D, Ikonomidis I, Tsirikos N, Kottis G, Kostopoulou V, Pamboucas C, Papadopoulou E, Venetsanou K, Giatrakos N, Yang GZ, Nihoyannopoulos P, Toumanidis S (2008) The association of coronary flow changes and inflammatory indices to ischaemia-reperfusion microvascular damage and left ventricular remodelling. Basic Res Cardiol 103:345–355. doi: 10.1007/s00395-008-0720-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Cao ZJ, Hu YL, Wu W, Ha TZ, Kelley J, Deng CL, Chen Q, Li CF, Li JH, Li YH (2009) The TIR/BB-loop mimetic AS-1 protects the myocardium from ischaemia/reperfusion injury. Cardiovasc Res 84:442–451. doi: 10.1093/cvr/cvp234 PubMedCrossRefGoogle Scholar
  6. 6.
    Chen Y, Wang X, Ben JJ, Yue S, Bai H, Guan XX, Bai XM, Jiang L, Ji Y, Fan LM, Chen Q (2006) The di-leucine motif contributes to class A scavenger receptor-mediated internalization of acetylated lipoproteins. Arterioscler Thromb Vasc Biol 26:1317–1322. doi: 10.1161/01.ATV.0000220171.50282.0c PubMedCrossRefGoogle Scholar
  7. 7.
    Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, Frey N (2010) FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105:301–313. doi: 10.1007/s00395-009-0046-y PubMedCrossRefGoogle Scholar
  8. 8.
    Choudhury RP, Lee JM, Greaves DR (2005) Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med 2:309–315. doi: 10.1038/ncpcardio0195 PubMedCrossRefGoogle Scholar
  9. 9.
    Conraads VM, Vrints CJ, Rodrigus IE, Hoymans VY, Van Craenenbroeck EM, Bosmans J, Claeys MJ, Van Herck P, Linke A, Schuler G, Adams V (2010) Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: a mechanism contributing to myocardial remodeling? Basic Res Cardiol 105:219–226. doi: 10.1007/s00395-009-0068-5 PubMedCrossRefGoogle Scholar
  10. 10.
    den Uil CA, Lagrand WK, Valk SDA, Spronk PE, Simoons ML (2009) Management of cardiogenic shock: focus on tissue perfusion. Curr Probl Cardiol 34:330–349. doi: 10.1016/j.cpcardiol.2009.04.002 CrossRefGoogle Scholar
  11. 11.
    Ding L, Dong L, Chen X, Zhang L, Xu X, Ferro A, Xu B (2009) Increased expression of integrin-linked kinase attenuates left ventricular remodeling and improves cardiac function after myocardial infarction. Circulation 120:764–773. doi: 10.1161/CIRCULATIONAHA.109.870725 PubMedCrossRefGoogle Scholar
  12. 12.
    Dominguez PM, Ardavin C (2010) Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234:90–104. doi: 10.1111/j.0105-2896.2009.00876.x PubMedCrossRefGoogle Scholar
  13. 13.
    dos Santos L, Santos AA, Goncalves GA, Krieger JE, Tucci PJF (2010) Bone marrow cell therapy prevents infarct expansion and improves border zone remodeling after coronary occlusion in rats. Int J Cardiol 145:34–39. doi: 10.1016/j.ijcard.2009.06.008 PubMedCrossRefGoogle Scholar
  14. 14.
    Ertl G, Frantz S (2005) Healing after myocardial infraction. Cardiovasc Res 66:22–32. doi: 10.1016/j.cardiores.2005.01.011 PubMedCrossRefGoogle Scholar
  15. 15.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47. doi: 10.1016/S0008-6363(01)00434-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Frieler RA, Meng H, Duan SZ, Berger S, Schutz G, He Y, Xi G, Wang MM, Mortensen RM (2011) Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke 42:179–185. doi: 10.1161/STROKEAHA.110.598441 PubMedCrossRefGoogle Scholar
  17. 17.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi: 10.1038/nri1733 PubMedCrossRefGoogle Scholar
  18. 18.
    Greaves DR, Gordon S (2009) The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res 50:S282–S286. doi: 10.1194/jlr.R800066-JLR200 PubMedCrossRefGoogle Scholar
  19. 19.
    Grewal T, Priceputu E, Davignon J, Bernier L (2001) Identification of a gamma-interferon-responsive element in the promoter of the human macrophage scavenger receptor A gene. Arterioscler Thromb Vasc Biol 21:825–831. doi: 10.1161/01.ATV.21.5.825 PubMedCrossRefGoogle Scholar
  20. 20.
    Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi: 10.1007/s00395-010-0121-4 PubMedCrossRefGoogle Scholar
  21. 21.
    Henning RJ, Shariff M, Eadula U, Alvarado F, Vasko M, Sanberg PR, Sanberg CD, Delostia V (2008) Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev 17:1207–1219. doi: 10.1089/scd.2008.0023 PubMedCrossRefGoogle Scholar
  22. 22.
    Heusch G, Kleinbongard P, Bose D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization from bedside to bench and back to bedside. Circulation 120:1822–1836. doi: 10.1161/CIRCULATIONAHA.109.888784 PubMedCrossRefGoogle Scholar
  23. 23.
    Hu Y, Li T, Wang Y, Li J, Guo L, Wu M, Shan X, Que L, Ha T, Chen Q, Kelley J, Li Y (2009) Tollip attenuated the hypertrophic response of cardiomyocytes induced by IL-1beta. Front Biosci 14:2747–2756. doi: 10.2741/4011 PubMedCrossRefGoogle Scholar
  24. 24.
    Javadov S, Rajapurohitam V, Kilic A, Hunter JC, Zeidan A, Faruq NS, Escobales N, Karmazyn M (2011) Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 106:99–109. doi: 10.1007/s00395-010-0122-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Kleinbongard P, Heusch G, Schulz R (2010) TNF alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi: 10.1016/j.pharmthera.2010.05.002 PubMedCrossRefGoogle Scholar
  26. 26.
    Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22:317–326. doi: 10.1681/ASN.2009060615 PubMedCrossRefGoogle Scholar
  27. 27.
    Lim WS, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I (2008) Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117:940–951. doi: 10.1161/CIRCULATIONAHA.107.711275 PubMedCrossRefGoogle Scholar
  28. 28.
    Limmon GV, Arredouani M, McCann KL, Corn Minor RA, Kobzik L, Imani F (2008) Scavenger receptor class-A is a novel cell surface receptor for double-stranded RNA. FASEB J 22:159–167. doi: 10.1096/fj.07-8348com PubMedCrossRefGoogle Scholar
  29. 29.
    Liu Q, Sargent MA, York AJ, Molkentin JD (2009) ASK1 regulates cardiomyocyte death but not hypertrophy in transgenic mice. Circ Res 105:1110–1117. doi: 10.1161/CIRCRESAHA.109.200741 PubMedCrossRefGoogle Scholar
  30. 30.
    Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol 177:7303–7311PubMedGoogle Scholar
  31. 31.
    Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–1336. doi: 10.1016/j.bbagen.2007.12.011 PubMedCrossRefGoogle Scholar
  32. 32.
    Mersmann J, Habeck K, Latsch K, Zimmermann R, Jacoby C, Fischer JW, Hartmann C, Schrader J, Kirschning CJ, Zacharowski K (2011) Left ventricular dilation in toll-like receptor 2 deficient mice after myocardial ischemia/reperfusion through defective scar formation. Basic Res Cardiol 106:89–98. doi: 10.1007/s00395-010-0127-y PubMedCrossRefGoogle Scholar
  33. 33.
    Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 363:245–266PubMedCrossRefGoogle Scholar
  34. 34.
    Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445. doi: 10.1161/CIRCULATIONAHA.109.916346 PubMedCrossRefGoogle Scholar
  35. 35.
    Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MJ, Weissleder R (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218–1225. doi: 10.1161/01.RES.0000265064.46075.31 PubMedCrossRefGoogle Scholar
  36. 36.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047. doi: 10.1084/jem.20070885 PubMedCrossRefGoogle Scholar
  37. 37.
    Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the working group of cellular biology of the heart of the European society of cardiology. Cardiovasc Res 87:406–423. doi: 10.1093/cvr/cvq129 PubMedCrossRefGoogle Scholar
  38. 38.
    Pluddemann A, Hoe JC, Makepeace K, Moxon ER, Gordon S (2009) The macrophage scavenger receptor A is host-protective in experimental meningococcal septicaemia. Plos Pathog 5:e1000297. doi: 10.1371/journal.ppat.1000297 PubMedCrossRefGoogle Scholar
  39. 39.
    Robbins CS, Swirski FK (2010) The multiple roles of monocyte subsets in steady state and inflammation. Cell Mol Life Sci 67:2685–2693. doi: 10.1007/s00018-010-0375-x PubMedCrossRefGoogle Scholar
  40. 40.
    Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700. doi: 10.1016/S0008-6363(02)00319-X PubMedCrossRefGoogle Scholar
  41. 41.
    Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357. doi: 10.1096/fj.02-0975fje PubMedGoogle Scholar
  42. 42.
    Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2 yin and yang in myocardial infarction? Circulation 119:1355–1357. doi: 10.1161/CIRCULATIONAHA.108.846105 PubMedCrossRefGoogle Scholar
  43. 43.
    Skyschally A, Schulz R, Heusch G (2008) Pathophysiology of myocardial infarction. Protection by ischemic pre- and postconditioning. Herz 33:88–100. doi: 10.1007/s00059-008-3101-9 PubMedCrossRefGoogle Scholar
  44. 44.
    Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs no causal role for RISK activation. Circ Res 104:15–U35. doi: 10.1161/CIRCRESAHA.108.186429 Google Scholar
  45. 45.
    Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Horiuchi S, Takahashi K, Kruijt JK, van Berkel TJC, Steinbrecher UP, Ishibashi S, Maeda N, Gordon S, Kodama T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296. doi: 10.1038/386292a0 PubMedCrossRefGoogle Scholar
  46. 46.
    Troidl C, Mollmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsasser A (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485–3496. doi: 10.1111/j.1582-4934.2009.00707.x PubMedCrossRefGoogle Scholar
  47. 47.
    Tsujita K, Kaikita K, Hayasaki T, Honda T, Kobayashi H, Sakashita N, Suzuki H, Kodama T, Ogawa H, Takeya M (2007) Targeted deletion of class A macrophage scavenger receptor increases the risk of cardiac rupture after experimental myocardial infarction. Circulation 115:1904–1911. doi: 10.1161/CIRCULATIONAHA.106.671198 PubMedCrossRefGoogle Scholar
  48. 48.
    Usui HK, Shikata K, Sasaki M, Okada S, Matsuda M, Shikata Y, Ogawa D, Kido Y, Nagase R, Yozai K, Ohga S, Tone A, Wada J, Takeya M, Horiuchi S, Kodama T, Makino H (2007) Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 56:363–372. doi: 10.2337/db06-0359 PubMedCrossRefGoogle Scholar
  49. 49.
    van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJA (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829. doi: 10.2353/ajpath.2007.060547 PubMedCrossRefGoogle Scholar
  50. 50.
    Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto L, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K (2003) Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Nati Acad Sci USA 100:15883–15888. doi: 10.1072/pnas.2136717100 CrossRefGoogle Scholar
  51. 51.
    Zhu XD, Zhuang Y, Ben JJ, Qian LL, Huang HP, Bai H, Sha JH, He ZG, Chen Q (2011) Caveolae- dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. J Biol Chem 286:8231–8239. doi: 10.1074/jbc.M110.145888 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yulong Hu
    • 1
    • 2
  • Hanwen Zhang
    • 1
  • Yan Lu
    • 1
  • Hui Bai
    • 1
  • Yiming Xu
    • 1
  • Xudong Zhu
    • 1
    • 2
  • Rongmei Zhou
    • 1
  • Jingjing Ben
    • 1
    • 2
    Email author
  • Yong Xu
    • 1
  • Qi Chen
    • 1
    • 2
    Email author
  1. 1.Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
  2. 2.State key laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina

Personalised recommendations