Basic Research in Cardiology

, 106:773 | Cite as

Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival

  • Shaunta Guha
  • John P. Cullen
  • David Morrow
  • Alberto Colombo
  • Caitríona Lally
  • Dermot Walls
  • Eileen M. Redmond
  • Paul A. Cahill
Original Contribution


The role of glycogen synthase kinase 3 beta (GSK-3β) in modulating Notch control of vascular smooth muscle cell (vSMC) growth (proliferation and apoptosis) was examined in vitro under varying conditions of cyclic strain and validated in vivo following changes in medial tension and stress. Modulation of GSK-3β in vSMC following ectopic expression of constitutively active GSK-3β, siRNA knockdown and pharmacological inhibition with SB-216763 demonstrated that GSK-3β positively regulates Notch intracellular domain expression, CBF-1/RBP-Jκ transactivation and downstream target gene mRNA levels, while concomitantly promoting vSMC proliferation and inhibiting apoptosis. In contrast, inhibition of GSK-3β attenuated Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to cyclic strain environments in vitro using both a Flexercell™ Tension system and a novel Sylgard™ phantom vessel following bare metal stent implantation revealed that cyclic strain inhibits GSK-3β activity independent of p42/p44 MAPK and p38 activation concomitant with reduced Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to changes in medial strain microenvironments in vivo following carotid artery ligation revealed that enhanced GSK-3β activity was predominantly localized to medial and neointimal vSMC concomitant with increased Notch signaling, proliferating nuclear antigen and decreased Bax expression, respectively, as vascular remodeling progressed. GSK-3β is an important modulator of Notch signaling leading to altered vSMC cell growth where low strain/tension microenvironments prevail.


Notch GSK-3β Vascular smooth muscle Cyclic strain Neointimal proliferation 



This work was supported in part by grants from Science Foundation Ireland (PAC and CL) and the Health Research Board of Ireland (PAC) and by funds from the National Institutes of Health, (AA-12610 to E.M.R and K99HL095650 to D.M.) and the American Heart Association (Grant-in-Aid 0855865D to J.P.C).

Conflict of interest



  1. 1.
    Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189. doi: 1016/j.pneurobio.2006.07.006 PubMedCrossRefGoogle Scholar
  2. 2.
    Bonnet S, Paulin R, Sutendra G, Dromparis P, Roy M, Watson KO, Nagendran J, Haromy A, Dyck JR, Michelakis ED (2009) Dehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-β NFAT axis. Circulation 120:1231–1240. doi: 10.1161/CIRCULATIONAHA.109.848911 PubMedCrossRefGoogle Scholar
  3. 3.
    Camenzind E, Wijns W, Mauri L, Boersma E, Parikh K, Kurowski V, Gao RL, Bode C, Greenwood JP, Gershlick A, O’Neill W, Serruys PW, Jorissen B, Steg PG, Investigtors PSC (2009) Rationale and design of the Patient Related OuTcomes with Endeavor versus Cypher stenting Trial (PROTECT): randomized controlled trial comparing the incidence of stent thrombosis and clinical events after sirolimus or zotarolimus drug-eluting stent implantation. Am Heart J 158:U902–U947. doi: 10.1016/J.Ahj.2009.10.002
  4. 4.
    Campos AH, Wang W, Pollman MJ, Gibbons GH (2002) Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation. Circ Res 91:999–1006. doi: 10.1161/01.RES.0000044944.99984.25 PubMedCrossRefGoogle Scholar
  5. 5.
    Chow W, Hou G, Bendeck MP (2008) Glycogen synthase kinase 3beta regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury. Exp Cell Res 314:2919–2929. doi: 10.1016/j.yexcr.2008.07.010 PubMedCrossRefGoogle Scholar
  6. 6.
    Colombo A, Zahedmanesh H, Toner DM, Cahill PA, Lally C (2010) A method to develop mock arteries suitable for cell seeding and in vitro cell culture experiments. J Mech Behav Biomed Mater 3:470–477. doi: 10.1016/j.jmbbm.2010.04.003 PubMedCrossRefGoogle Scholar
  7. 7.
    Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667. doi: 10.1007/s00395-009-0043-1 PubMedCrossRefGoogle Scholar
  8. 8.
    Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186. doi: 10.1242/jcs.00384 PubMedCrossRefGoogle Scholar
  9. 9.
    Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A (2003) Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 278:32227–32235. doi: 10.1074/jbc.M304001200 PubMedCrossRefGoogle Scholar
  10. 10.
    Foltz DR, Santiago MC, Berechid BE, Nye JS (2002) Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol 12:1006–1011. doi: 10.1016/S0960-9822(02)00888-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Force T, Woodgett JR (2009) Unique and overlapping functions of GSK-3 isoforms in cell differentiation and proliferation and cardiovascular development. J Biol Chem 284:9643–9647. doi: 10.1074/jbc.R800077200 PubMedCrossRefGoogle Scholar
  12. 12.
    Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520. doi: 10.1016/j.molcel.2004.10.014 PubMedCrossRefGoogle Scholar
  13. 13.
    Gao W, Ferguson G, Connell P, Walshe T, Murphy R, Birney YA, O’Brien C, Cahill PA (2007) High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1alpha-dependent pathway. J Mol Cell Cardiol 42:609–619. doi: 10.1016/j.yjmcc.2006.12.006 PubMedCrossRefGoogle Scholar
  14. 14.
    Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C (2002) A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3:688–694. doi: 10.1093/embo-reports/kvf124 PubMedCrossRefGoogle Scholar
  15. 15.
    Gosens R, Meurs H, Schmidt M (2008) The GSK-3/beta-catenin-signalling axis in smooth muscle and its relationship with remodelling. Naunyn Schmiedebergs Arch Pharmacol 378:185–191. doi: 10.1007/s00210-008-0269-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Bio 10:53–62. doi: 10.1038/Nrm2596 CrossRefGoogle Scholar
  17. 17.
    Hall JL, Chatham JC, Eldar-Finkelman H, Gibbons GH (2001) Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis. Role of GSK3beta. Diabetes 50:1171–1179. doi: 10.2337/diabetes.50.5.1171 Google Scholar
  18. 18.
    Hibbert B, Ma X, Pourdjabbar A, Holm E, Rayner K, Chen YX, Sun J, Filion L, O’Brien ER (2009) Inhibition of endothelial progenitor cell glycogen synthase kinase-3beta results in attenuated neointima formation and enhanced re-endothelialization after arterial injury. Cardiovasc Res 83:16–23. doi: 10.1093/cvr/cvp156 PubMedCrossRefGoogle Scholar
  19. 19.
    Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406:86–90. doi: 10.1038/35017574 PubMedCrossRefGoogle Scholar
  20. 20.
    Ibrahim J, Berk BC (2009) Flow-mediated vascular remodeling in hypertension: relation to hemodyamics. Stroke 40:582–590. doi: 10.1161/STROKEAHA.108.529826 PubMedCrossRefGoogle Scholar
  21. 21.
    Jin J, Wang Y, Wang F, Kerns JK, Vinader VM, Hancock AP, Lindon MJ, Stevenson GI, Morrow DM, Rao P, Nguyen C, Barrett VJ, Browning C, Hartmann G, Andrew DP, Sarau HM, Foley JJ, Jurewicz AJ, Fornwald JA, Harker AJ, Moore ML, Rivero RA, Belmonte KE, Connor HE (2007) Oxazolidinones as novel human CCR8 antagonists. Bioorg Med Chem Lett 17:1722–1725. doi: 10.1016/j.bmcl.2006.12.076 PubMedCrossRefGoogle Scholar
  22. 22.
    Jin YH, Kim H, Oh M, Ki H, Kim K (2009) Regulation of Notch1/NICD and Hes1 expressions by GSK-3alpha/beta. Mol Cells 27:15–19. doi: 10.1007/s10059-009-0001-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Jung JH, Min PK, Kim JY, Park S, Choi EY, Ko YG, Choi D, Jang Y, Shim WH, Cho SY (2006) Systemic immunosuppressive therapy inhibits in-stent restenosis in patients with renal allograft. Catheter Cardiovasc Interv 68:567–573. doi: 10.1002/ccd.20799 PubMedCrossRefGoogle Scholar
  24. 24.
    Kumar A, Lindner V (1997) Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol 17:2238–2244PubMedCrossRefGoogle Scholar
  25. 25.
    Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683PubMedGoogle Scholar
  26. 26.
    Lee CS, Kwon YW, Yang HM, Kim SH, Kim TY, Hur J, Park KW, Cho HJ, Kang HJ, Park YB, Kim HS (2009) New mechanism of rosiglitazone to reduce neointimal hyperplasia: activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9. Arterioscler Thromb Vasc Biol 29:472–479. doi: 10.1161/ATVBAHA.108.176230 PubMedCrossRefGoogle Scholar
  27. 27.
    Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2010) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol doi: 10.1002/jcp.22422
  28. 28.
    Li Y, Takeshita K, Liu PY, Satoh M, Oyama N, Mukai Y, Chin MT, Krebs L, Kotlikoff MI, Radtke F, Gridley T, Liao JK (2009) Smooth muscle Notch1 mediates neointimal formation after vascular injury. Circulation 119:2686–2692. doi: 10.1161/CIRCULATIONAHA.108.790485 PubMedCrossRefGoogle Scholar
  29. 29.
    Liu F, Schaphorst KL, Verin AD, Jacobs K, Birukova A, Day RM, Bogatcheva N, Bottaro DP, Garcia JG (2002) Hepatocyte growth factor enhances endothelial cell barrier function and cortical cytoskeletal rearrangement: potential role of glycogen synthase kinase-3beta. FASEB J 16:950–962. doi: 10.1096/fj.01-0870com PubMedCrossRefGoogle Scholar
  30. 30.
    Ma X, Hibbert B, Dhaliwal B, Seibert T, Chen YX, Zhao X, O’Brien ER (2010) Delayed re-endothelialization with rapamycin-coated stents is rescued by the addition of a glycogen synthase kinase-3beta inhibitor. Cardiovasc Res 86:338–345. doi: 10.1093/cvr/cvq047 PubMedCrossRefGoogle Scholar
  31. 31.
    Martinez A, Perez DI (2008) GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer’s disease? J Alzheimers Dis 15:181–191PubMedGoogle Scholar
  32. 32.
    Miura T, Miki T (2009) GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J 73:1184–1192. doi: 10.1253/circj.CJ-09-0284 PubMedCrossRefGoogle Scholar
  33. 33.
    Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3beta. J Biol Chem 285:29336–29347. doi: 10.1074/jbc.M110.101147 PubMedCrossRefGoogle Scholar
  34. 34.
    Morrow D, Cullen JP, Liu W, Cahill PA, Redmond EM (2010) Alcohol inhibits smooth muscle cell proliferation via regulation of the notch signaling pathway. Arterioscler Thromb Vasc Biol 30:2597–2603. doi: 10.1161/ATVBAHA.110.215681 PubMedCrossRefGoogle Scholar
  35. 35.
    Morrow D, Cullen JP, Liu W, Guha S, Sweeney C, Birney YA, Collins N, Walls D, Redmond EM, Cahill PA (2009) Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A. Arterioscler Thromb Vasc Biol 29:1112–1118. doi: 10.1161/ATVBAHA.109.186890 PubMedCrossRefGoogle Scholar
  36. 36.
    Morrow D, Guha S, Sweeney C, Birney Y, Walshe T, O’Brien C, Walls D, Redmond EM, Cahill PA (2008) Notch and vascular smooth muscle cell phenotype. Circ Res 103:1370–1382. doi: 10.1161/CIRCRESAHA.108.187534 PubMedCrossRefGoogle Scholar
  37. 37.
    Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA (2005) Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289:C1188–C1196. doi: 10.1152/ajpcell.00198.2005 PubMedCrossRefGoogle Scholar
  38. 38.
    Morrow D, Sweeney C, Birney YA, Cummins PM, Walls D, Redmond EM, Cahill PA (2005) Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cells in vitro. Circ Res 96:567–575. doi: 10.1161/01.RES.0000159182.98874.43 PubMedCrossRefGoogle Scholar
  39. 39.
    Park HJ, Kim HJ, Bae GS, Seo SW, Kim DY, Jung WS, Kim MS, Song MY, Kim EK, Kwon KB, Hwang SY, Song HJ, Park CS, Park RK, Chong MS, Park SJ (2009) Selective GSK-3beta inhibitors attenuate the cisplatin-induced cytotoxicity of auditory cells. Hearing Res 257:53–62. doi: 10.1016/j.heares.2009.08.001 CrossRefGoogle Scholar
  40. 40.
    Saint Just Ribeiro M, Hansson ML, Lindberg MJ, Popko-Scibor AE, Wallberg AE (2009) GSK3beta is a negative regulator of the transcriptional coactivator MAML1. Nucleic Acids Res 37:6691–6700. doi: 10.1093/nar/gkp724 PubMedCrossRefGoogle Scholar
  41. 41.
    Schwartz RS, Henry TD (2002) Pathophysiology of coronary artery restenosis. Rev Cardiovasc Med 3(Suppl 5):S4–S9PubMedGoogle Scholar
  42. 42.
    Sedding DG, Seay U, Fink L, Heil M, Kummer W, Tillmanns H, Braun-Dullaeus RC (2003) Mechanosensitive p27Kip1 regulation and cell cycle entry in vascular smooth muscle cells. Circulation 108:616–622. doi: 10.1161/01.CIR.0000079102.08464.E2 PubMedCrossRefGoogle Scholar
  43. 43.
    Shyu KG (2009) Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci 116:377–389. doi: 10.1042/Cs20080163 PubMedCrossRefGoogle Scholar
  44. 44.
    Sweeney C, Morrow D, Birney YA, Coyle S, Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM, Cahill PA (2004) Notch 1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway. FASEB J 18:1421–1423. doi: 10.1096/fj.04-1700fje PubMedGoogle Scholar
  45. 45.
    Uemura K, Kuzuya A, Shimozono Y, Aoyagi N, Ando K, Shimohama S, Kinoshita A (2007) GSK3beta activity modifies the localization and function of presenilin 1. J Biol Chem 282:15823–15832. doi: 10.1074/jbc.M610708200 PubMedCrossRefGoogle Scholar
  46. 46.
    Vernhet H, Demaria R, Juan JM, Oliva-Lauraire MC, Senac JP, Dauzat M (2002) Arterial stenting and overdilation: does it change wall mechanics in small-caliber arteries? J Endovasc Ther 9:855–862PubMedCrossRefGoogle Scholar
  47. 47.
    Wang AB, Li HL, Zhang R, She ZG, Chen HZ, Huang Y, Liu DP, Liang CC (2007) A20 attenuates vascular smooth muscle cell proliferation and migration through blocking PI3k/Akt singling in vitro and in vivo. J Biomed Sci 14:357–371. doi: 10.1007/s11373-007-9150-x PubMedCrossRefGoogle Scholar
  48. 48.
    Willert M, Augstein A, Poitz DM, Schmeisser A, Strasser RH, Braun-Dullaeus RC (2010) Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol 105:267–277. doi: 10.1007/s00395-009-0055-x PubMedCrossRefGoogle Scholar
  49. 49.
    Yamamizu K, Matsunaga T, Uosaki H, Fukushima H, Katayama S, Hiraoka-Kanie M, Mitani K, Yamashita JK (2010) Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors. J Cell Biol 189:325–338. doi: 10.1083/jcb.200904114 PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou RH, Lee TS, Tsou TC, Rannou F, Li YS, Chien S, Shyy JY (2003) Stent implantation activates Akt in the vessel wall: role of mechanical stretch in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:2015–2020. doi: 10.1161/01.ATV.0000095161.06906.ED PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Shaunta Guha
    • 1
  • John P. Cullen
    • 2
  • David Morrow
    • 2
  • Alberto Colombo
    • 1
    • 3
  • Caitríona Lally
    • 1
    • 3
  • Dermot Walls
    • 4
  • Eileen M. Redmond
    • 2
  • Paul A. Cahill
    • 1
  1. 1.Vascular Health Research Centre, Faculty of Science and HealthDublin City UniversityDublin 9Ireland
  2. 2.Department of SurgeryUniversity of Rochester Medical CenterRochesterUSA
  3. 3.School of Mechanical and Manufacturing EngineeringDublin City UniversityDublin 9Ireland
  4. 4.School of Biotechnology and the National Centre for Sensor ResearchDublin City UniversityDublin 9Ireland

Personalised recommendations