Advertisement

Basic Research in Cardiology

, Volume 106, Issue 4, pp 511–519 | Cite as

Remote intermittent ischemia before coronary artery bypass graft surgery: a strategy to reduce injury and inflammation?

  • Partheeban Karuppasamy
  • Sanjay Chaubey
  • Tracy Dew
  • Rebecca Musto
  • Roy Sherwood
  • Jatin Desai
  • Lindsay John
  • Ajay M. Shah
  • Michael S. Marber
  • Gudrun KunstEmail author
Original Contribution

Abstract

Perioperative myocardial ischemia contributes to postoperative morbidity and mortality. Remote intermittent ischemia (RI) has been shown to benefit patients undergoing coronary artery bypass graft (CABG) surgery by decreasing postoperative cardiac troponin levels. In addition, there is evidence that volatile anesthetics may provide myocardial protection. In this prospective randomized controlled trial we tested the hypothesis that RI is cardioprotective under a strict anesthetic regime with volatile anesthesia until cardiopulmonary bypass (CPB). We also assessed whether RI modulates postoperative cytokine and growth factor concentrations. Fifty-four patients referred for elective CABG surgery without concomitant valve or aortic surgery were randomized to three 5-min cycles of left upper limb ischemia by cuff inflation (RI) or placebo without cuff inflation (Plac). All patients received the volatile anesthetic isoflurane (1.15–1.5 vol%) before CPB and the intravenous anesthetic propofol (3–4 mg/kg/h) thereafter until the end of surgery. Cardiac arrest during CPB was induced by intermittent cross-clamp fibrillation, or by blood cardioplegia. We excluded patients older than 85 years, with unstable angina, significant renal disease, and those taking sulfonylureas. Troponin I (cTnI) was measured preoperatively and after 6, 12, 24 and 48 h. In addition, brain natriuretic peptide (BNP), creatine kinase (CKMB) and a panel of cytokines and growth factors were analyzed perioperatively. Although cTnI, BNP and CKMB all increased post-CABG, there were no significant differences between RI and Plac groups; area under the curve for cTnI 189.4 (183.6) ng/mL/48 h and 183.0 (155.2) ng/mL/48 h mean (SD), p = 0.90, respectively, despite a tendency to a shorter (p < 0.07) cross-clamp time in the treatment group. Similarly, there were no differences between groups in the central venous concentrations of numerous cytokines and growth factors. In patients undergoing CABG surgery RI does not provide myocardial protection under a strict anesthetic regime with volatile anesthesia until CPB, and RI was not associated with changes in cytokines.

Keywords

Cardioprotection Coronary artery disease Bypass surgery Inflammation Myocardial ischemia Preconditioning 

Notes

Acknowledgments

The authors acknowledge the support of all nursing staff at the Cardiac Recovery and Victoria and Albert High Dependency Units, and the additional statistical advice by Dr Toby Prevost. The financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust is also acknowledged. This study was supported by a grant from the Department of Research and Development, King’s College Hospital Foundation Trust, London.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bish LT, Morine KJ, Sleeper MM, Sweeney HL (2010) Myostatin is upregulated following stress in an Erk-dependent manner and negatively regulates cardiomyocyte growth in culture and in a mouse model. PLoS One 5:e10230. doi: 10.1371/journal.pone.0010230 PubMedCrossRefGoogle Scholar
  2. 2.
    Bøtker HE, Kharbanda R, Schmidt MR, Bøttcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sørensen HT, Redington AN, Nielsen TT (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375:727–734. doi: 10.1016/S0140-6736(09)62001-8 PubMedCrossRefGoogle Scholar
  3. 3.
    Devereaux PJ, Goldman L, Cook DJ, Cook DJ, Gilbert K, Leslie K, Guyatt HG (2005) Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ 6:627–634. doi: 10.1503/cmaj.050011 Google Scholar
  4. 4.
    Ebelt H, Jungblut M, Zhang Y, Kubin T, Kostin S, Technau A, Oustanina S, Niebrugge S, Lehmann J, Werdan K, Braun T (2007) Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells 25:236–244. doi: 10.1634/stemcells.2006-0374 PubMedCrossRefGoogle Scholar
  5. 5.
    Fleischmann KE, Goldman L, Young B, Lee TH (2003) Association between cardiac and noncardiac complications in patients undergoing noncardiac surgery: outcomes and effects on length of stay. Am J Med 115:515–520. doi: 10.1016/S0002-9343(03)00474-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Hausenloy DJ, Baxter G, Bell R, Bøtker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter workshop recommendations. Basic Res Cardiol 105:677–686. doi: 10.1007/s00395-010-0121-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM (2007) Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 370:575–579. doi: 10.1016/S0140-6736(07)61296-3 PubMedCrossRefGoogle Scholar
  8. 8.
    Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386. doi: 10.1093/cvr/cvn114 PubMedCrossRefGoogle Scholar
  9. 9.
    Hausenloy DJ, Yellon DM (2009) Cardioprotective growth factors. Cardiovasc Res 83:179–194. doi: 10.1093/cvr/cvp062 PubMedCrossRefGoogle Scholar
  10. 10.
    Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol 105:151–154. doi: 10.1007/s00395-009-0080-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Heusch G, Kleinbongard P, Böse D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolisation from bedside to bench and back to bedside. Circulation 120:1822–1836. doi: 10.1161/circulationaha.109.888784 PubMedCrossRefGoogle Scholar
  12. 12.
    Jakobsen CJ, Berg H, Hindsholm KB, Faddy N, Sloth E (2007) The influence of propofol versus sevoflurane anesthesia on outcome in 10, 535 cardiac surgical procedures. J Cardiothorac Vasc Anesth 21:664–671. doi: 10.1053/j.jvca.2007.03.002 PubMedCrossRefGoogle Scholar
  13. 13.
    Kersten JR, Schmeling TJ, Pagel PS, Gross GJ, Warltier DC (1997) Isoflurane mimics ischemic preconditioning via activation of KATP channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology 87:361–370PubMedCrossRefGoogle Scholar
  14. 14.
    Kleinbongard P, Heusch G, Schulz R (2010) TNF-alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi: 10.1016/j.pharmathera.2010.05.002 PubMedCrossRefGoogle Scholar
  15. 15.
    Lacerda L, McCarthy J, Mungly SFK, Lynn EG, Sack MN, Opie LH, Lecour S (2010) TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105:751–762. doi: 10.1007/s00395-010-0113-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Landesberg G, Shatz V, Akopnik I, Wolf YG, Mayer M, Berlatzky Y, Weissman C, Mosseri M (2003) Association of cardiac troponin, ck-mb, and postoperative myocardial ischemia with long-term survival after major vascular surgery. J Am Coll Cardiol 42:1547–1554. doi: 10.1016/S0735-1097(03)01069-6 PubMedCrossRefGoogle Scholar
  17. 17.
    Landoni G, Biondi-Zoccai GG, Zangrillo A, Bignami E, D’Avolio S, Marchetti C, Calabro MG, Fochi O, Guarracino F, Tritapepe L, De Hert S, Torri G (2007) Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 21:502–511. doi: 10.1053/j.jvca.2007.02.013 PubMedCrossRefGoogle Scholar
  18. 18.
    Lim SJ, Yellon DM, Hausenloy DJ (2010) The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol 105:651–655. doi: 10.1007/s00395-010-0099-y PubMedCrossRefGoogle Scholar
  19. 19.
    Matheny RW Jr, Nindl BC, Adamo ML (2010) Minireview: Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151:865–875. doi: 10.1210/en.2009-1217 PubMedCrossRefGoogle Scholar
  20. 20.
    Niu J, Kolattukudy PE (2009) Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond) 117:95–109. doi: 10.1042/CS20080581 CrossRefGoogle Scholar
  21. 21.
    Pelosi L, Giacinti C, Nardis C, Borsellino G, Rizzuto E, Nicoletti C, Wannenes F, Battistini L, Rosenthal N, Molinaro M, Musaro A (2007) Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. Faseb J 21:1393–1402. doi: 10.1096/fj.06-7690com PubMedCrossRefGoogle Scholar
  22. 22.
    Pravdic D, Sedlic F, Mio Y, Vladic N, Bienengraeber M, Bosnjak ZJ (2009) Anesthetic-induced preconditioning delays opening of mitochondrial permeability transition pore via protein kinase C-epsilon-mediated pathway. Anesthesiology 111:267–274. doi: 10.1097/ALN.0b013e3181a91957 PubMedCrossRefGoogle Scholar
  23. 23.
    Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899PubMedGoogle Scholar
  24. 24.
    Rahman IA, Mascaro JG, Steeds RP, Frenneaux MP, Nightingale P, Gosling P, Townsend P, Townend JN, Green D, Bonser RS (2010) Remote ischaemic pre-conditioning in human coronary artery bypass surgery: from promise to disappointment. Circulation 122:S53–S59. doi: 10.1161/circulationaha.109.926667 PubMedCrossRefGoogle Scholar
  25. 25.
    Santini MP, Tsao L, Monassier L, Theodoropoulos C, Carter J, Lara-Pezzi E, Slonimsky E, Salimova E, Delafontaine P, Song YH, Bergmann M, Freund C, Suzuki K, Rosenthal N (2007) Enhancing repair of the mammalian heart. Circ Res 100:1732–1740. doi: 10.1161/circresaha.107.148791 PubMedCrossRefGoogle Scholar
  26. 26.
    Scarci M, Fallouh HB, Young CP, Chambers DJ (2009) Does intermittent cross-clamp fibrillation provide equivalent myocardial protection compared to cardioplegia in patients undergoing bypass graft revascularisation? Interact Cardiovasc Thorac Surg 9:872–878. doi: 10.1510/icvts.2009.209437 PubMedCrossRefGoogle Scholar
  27. 27.
    Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ, Bass JJ (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9. doi: 10.1002/(SICI)1097-4652(199907)180:1<1:AID-JCP1>3.0.CO;2-V PubMedCrossRefGoogle Scholar
  28. 28.
    Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146. doi: 10.1161/01.RES.0000255031.15793.86 PubMedCrossRefGoogle Scholar
  29. 29.
    Smith C, Kruger MJ, Smith RM, Myburgh KH (2008) The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 38:947–969. doi: 10.2165/00007256-200838110-00005 PubMedCrossRefGoogle Scholar
  30. 30.
    Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, André-Fouët X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148. doi: 10.1161/circulationaha.105.558122 PubMedCrossRefGoogle Scholar
  31. 31.
    Suleiman MS, Zacharowski K, Angelini GD (2008) Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics. Br J Pharmacol 153:21–33. doi: 10.1038/sj.bjp.0707526 PubMedCrossRefGoogle Scholar
  32. 32.
    Symons JA, Myles PS (2006) Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery: a meta-analysis. Br J Anaesth 97:127–136. doi: 10.1093/bja/ael149 PubMedCrossRefGoogle Scholar
  33. 33.
    Takahashi M, Li TS, Suzuki R, Kobayashi T, Ito H, Ikeda Y, Matsuzaki M, Hamano K (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886–H893. doi: 10.1152/ajpheart.00142.2006 PubMedCrossRefGoogle Scholar
  34. 34.
    Tarant JM (2010) Blood cytokines as biomarkers of in vivo toxicity in preclinical safety assessment: considerations for their use. Toxicol Sci 117:4–16. doi: 10.1093/toxsci/kfq134 CrossRefGoogle Scholar
  35. 35.
    Teoh LK, Grant R, Hulf JA, Pugsley WB, Yellon DM (2002) A comparison between ischemic preconditioning, intermittent cross-clamp fibrillation and cold crystalloid cardioplegia for myocardial protection during coronary artery bypass graft surgery. Cardiovasc Surg 10:251–255. doi: 10.1016/S0967-2109(02)00007-8 PubMedCrossRefGoogle Scholar
  36. 36.
    Thielmann M, Kottenberg E, Boengler K, Raffelsieper C, Neuhaeuser M, Peters J, Jakob H, Heusch G (2010) Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with cristalloid cardioplegic arrest. Basic Res Cardiol 105:657–664. doi: 10.1007/s00395-010-0104-5 PubMedCrossRefGoogle Scholar
  37. 37.
    Venugopal V, Hausenloy DJ, Ludman A, Di Salvo C, Kolvekar S, Yap J, Lawrence D, Bognolo J, Yellon DM (2009) Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomised controlled trial. Heart 95:1567–1571. doi: 10.1136/hrt.2008.155770 PubMedCrossRefGoogle Scholar
  38. 38.
    Wilson EM, Diwan A, Spinale FG, Mann DL (2004) Duality of innate stress responses in cardiac injury, repair, and remodeling. J Mol Cell Cardiol 37:801–811. doi: 10.1016/j.yjmcc.2004.05.028 PubMedCrossRefGoogle Scholar
  39. 39.
    Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC (2003) Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91:551–565. doi: 10.1093/bja/aeg205 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Partheeban Karuppasamy
    • 1
  • Sanjay Chaubey
    • 2
  • Tracy Dew
    • 3
  • Rebecca Musto
    • 3
  • Roy Sherwood
    • 3
  • Jatin Desai
    • 2
  • Lindsay John
    • 2
  • Ajay M. Shah
    • 4
  • Michael S. Marber
    • 5
  • Gudrun Kunst
    • 1
    Email author
  1. 1.Department of Anaesthetics, Intensive Care Medicine and Pain TherapyKing’s College Hospital NHS Foundation TrustLondonUnited Kingdom
  2. 2.Department of Cardiothoracic SurgeryKing’s College Hospital NHS Foundation TrustLondonUnited Kingdom
  3. 3.Department of Clinical BiochemistryKing’s College Hospital NHS Foundation TrustLondonUnited Kingdom
  4. 4.Cardiovascular Division, James Black Centre, King’s Denmark Hill CampusKing’s College London BHF Centre of ExcellenceLondonUnited Kingdom
  5. 5.Cardiovascular Division, The Rayne Institute, St Thomas’ HospitalKing’s College London BHF Centre of ExcellenceLondonUnited Kingdom

Personalised recommendations