Basic Research in Cardiology

, Volume 106, Issue 5, pp 849–864 | Cite as

Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models

  • Qianhong Li
  • Yiru Guo
  • Qinghui Ou
  • Ning Chen
  • Wen-Jian Wu
  • Fangping Yuan
  • Erin O’Brien
  • Tao Wang
  • Li Luo
  • Gregory N. Hunt
  • Xiaoping Zhu
  • Roberto BolliEmail author
Original Contribution


A model of intracoronary stem cell delivery that enables transgenesis/gene targeting would be a powerful tool but is still lacking. To address this gap, we compared intracoronary and intramyocardial delivery of lin/c-kit+/GFP+ cardiac stem cells (CSCs) in a murine model of reperfused myocardial infarction (MI). Lin/c-kit+/GFP+ CSCs were successfully expanded from GFP transgenic hearts and cultured with no detectable phenotypic change for up to ten passages. Intracoronary delivery of CSCs 2 days post-MI resulted in significant alleviation of adverse LV remodeling and dysfunction, which was at least equivalent, if not superior, to that achieved with intramyocardial delivery. Compared with intramyocardial injection, intracoronary infusion was associated with a more homogeneous distribution of CSCs in the infarcted region and a greater increase in viable tissue in this region, suggesting greater formation of new cardiomyocytes. Intracoronary CSC delivery resulted in improved function in the infarcted region, as well as in improved global LV systolic and diastolic function, and in decreased LV dilation and LV expansion index; the magnitude of these effects was similar to that observed after intramyocardial injection. We conclude that, in the murine model of reperfused MI, intracoronary CSC infusion is at least as effective as intramyocardial injection in limiting LV remodeling and improving both regional and global LV function. The intracoronary route appears to be superior in terms of uniformity of cell distribution, myocyte regeneration, and amount of viable tissue in the risk region. To our knowledge, this is the first study to report that intracoronary infusion of stem cells in mice is feasible and effective.


Intracoronary administration Cardiac stem cells Regeneration Mice Myocardial infarction Cardiac function 



This study was supported in part by NIH grants R01 HL55757, HL-70897, HL-76794, and P01HL78825.


  1. 1.
    Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997. doi: 10.1001/archinte.167.10.989 PubMedCrossRefGoogle Scholar
  2. 2.
    Anversa P, Kajstura J, Leri A (2007) If I can stop one heart from breaking. Circulation 115:829–832. doi: 10.1161/CIRCULATIONAHA.106.682195 PubMedCrossRefGoogle Scholar
  3. 3.
    Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073. doi: 10.1073/pnas.0706760104 PubMedCrossRefGoogle Scholar
  4. 4.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776 S0092867403006871[pii]PubMedCrossRefGoogle Scholar
  5. 5.
    Black RG Jr, Guo Y, Ge ZD, Murphree SS, Prabhu SD, Jones WK, Bolli R, Auchampach JA (2002) Gene dosage-dependent effects of cardiac-specific overexpression of the A3 adenosine receptor. Circ Res 91:165–172PubMedCrossRefGoogle Scholar
  6. 6.
    Bolli R, Chugh AR, D’Amario D, Stoddard MF, Ikram S, Wagner SG, Beache GM, Leri A, Hosoda T, Loughran JH, Goihberg P, Fiorini C, Solankhi NK, Fahsah I, Chatterjee A, Elmore JB, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2010) Use of cardiac stem cells for the treatment of heart failure: translation from bench to the clinical setting. Circ Res 107:e32–e40. doi: 10.1161/RES.0b013e3182014899 CrossRefGoogle Scholar
  7. 7.
    Bolli R, Dawn B (2009) The cornucopia of “pleiotropic” actions of statins: myogenesis as a new mechanism for statin-induced benefits? Circ Res 104:144–146. doi: 10.1161/CIRCRESAHA.108.192500 PubMedCrossRefGoogle Scholar
  8. 8.
    Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q, Jadoon AK (1997) The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 81:1094–1107PubMedGoogle Scholar
  9. 9.
    Boni A, Urbanek K, Nascimbene A, Hosoda T, Zheng H, Delucchi F, Amano K, Gonzalez A, Vitale S, Ojaimi C, Rizzi R, Bolli R, Yutzey KE, Rota M, Kajstura J, Anversa P, Leri A (2008) Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA 105:15529–15534. doi: 10.1073/pnas.0808357105 PubMedCrossRefGoogle Scholar
  10. 10.
    D’Amario D, Fiorini C, Campbell PM, Goichberg P, Sanada F, Zheng H, Hosoda T, Rota M, Connell JM, Gallegos RP, Welt FG, Givertz MM, Mitchell RN, Leri A, Kajstura J, Pfeffer MA, Anversa P (2011) Functionally Competent Cardiac Stem Cells Can Be Isolated From Endomyocardial Biopsies of Patients With Advanced Cardiomyopathies. Circ Res. doi: 10.1161/CIRCRESAHA.111.241380
  11. 11.
    Dawn B, Bolli R (2005) Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment. Basic Res Cardiol 100:494–503. doi: 10.1007/s00395-005-0552-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Dawn B, Bolli R (2007) Bone marrow for cardiac repair: the importance of characterizing the phenotype and function of injected cells. Eur Heart J 28:651–652. doi: 10.1093/eurheartj/ehm009 PubMedCrossRefGoogle Scholar
  13. 13.
    Dawn B, Bolli R (2006) Increasing evidence that estrogen is an important modulator of bone marrow-mediated cardiac repair after acute infarction. Circulation 114:2203–2205. doi: 10.1161/CIRCULATIONAHA.106.658260 PubMedCrossRefGoogle Scholar
  14. 14.
    Dawn B, Guo Y, Rezazadeh A, Huang Y, Stein AB, Hunt G, Tiwari S, Varma J, Gu Y, Prabhu SD, Kajstura J, Anversa P, Ildstad ST, Bolli R (2006) Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circ Res 98:1098–1105. doi: 10.1161/01.RES.0000218454.76784.66 PubMedCrossRefGoogle Scholar
  15. 15.
    Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102:3766–3771. doi: 10.1073/pnas.0405957102 PubMedCrossRefGoogle Scholar
  16. 16.
    Dawn B, Tiwari S, Kucia MJ, Zuba-Surma EK, Guo Y, Sanganalmath SK, Abdel-Latif A, Hunt G, Vincent RJ, Taher H, Reed NJ, Ratajczak MZ, Bolli R (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26:1646–1655. doi: 2007-0715[pii]10.1634/stemcells.2007-0715 PubMedCrossRefGoogle Scholar
  17. 17.
    Feldman MD, Erikson JM, Mao Y, Korcarz CE, Lang RM, Freeman GL (2000) Validation of a mouse conductance system to determine LV volume: comparison to echocardiography and crystals. Am J Physiol Heart Circ Physiol 279:H1698–H1707PubMedGoogle Scholar
  18. 18.
    Georgakopoulos D, Mitzner WA, Chen CH, Byrne BJ, Millar HD, Hare JM, Kass DA (1998) In vivo murine left ventricular pressure–volume relations by miniaturized conductance micromanometry. Am J Physiol 274:H1416–H1422PubMedGoogle Scholar
  19. 19.
    Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11507–11512PubMedCrossRefGoogle Scholar
  20. 20.
    Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103:525–536. doi: 10.1007/s00395-008-0741-0 PubMedCrossRefGoogle Scholar
  21. 21.
    Heusch G, Kleinbongard P, Bose D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 120:1822–1836. doi: 10.1161/CIRCULATIONAHA.109.888784 PubMedCrossRefGoogle Scholar
  22. 22.
    Hochman JS, Choo H (1987) Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 75:299–306PubMedCrossRefGoogle Scholar
  23. 23.
    Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112:I150–I156. doi: 10.1161/CIRCULATIONAHA.104.526749 PubMedGoogle Scholar
  24. 24.
    Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, Vajta G, Bolund L, Callesen H, Jorgensen AL, Nielsen AL, Mikkelsen JG (2010) Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res. doi: 10.1007/s11248-010-9438-x
  25. 25.
    Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marban E (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120:1075–1083, 1077 p following 1083. doi: 10.1161/CIRCULATIONAHA.108.816058 Google Scholar
  26. 26.
    Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi: 10.1016/j.pharmthera.2010.05.002 PubMedCrossRefGoogle Scholar
  27. 27.
    Li Q, Guo Y, Ou Q, Cui C, Wu WJ, Tan W, Zhu X, Lanceta LB, Sanganalmath SK, Dawn B, Shinmura K, Rokosh GD, Wang S, Bolli R (2009) Gene transfer of inducible nitric oxide synthase affords cardioprotection by upregulating heme oxygenase-1 via a nuclear factor-{kappa}B-dependent pathway. Circulation 120:1222–1230. doi: 10.1161/CIRCULATIONAHA.108.778688 PubMedCrossRefGoogle Scholar
  28. 28.
    Li Q, Guo Y, Tan W, Ou Q, Wu WJ, Sturza D, Dawn B, Hunt G, Cui C, Bolli R (2007) Cardioprotection afforded by inducible nitric oxide synthase gene therapy is mediated by cyclooxygenase-2 via a nuclear factor-kappaB dependent pathway. Circulation 116:1577–1584. doi: 10.1161/CIRCULATIONAHA.107.689810 PubMedCrossRefGoogle Scholar
  29. 29.
    Li Q, Guo Y, Tan W, Stein AB, Dawn B, Wu WJ, Zhu X, Lu X, Xu X, Siddiqui T, Tiwari S, Bolli R (2006) Gene therapy with iNOS provides long-term protection against myocardial infarction without adverse functional consequences. Am J Physiol Heart Circ Physiol 290:H584–H589. doi: 10.1152/ajpheart.00855.2005 PubMedCrossRefGoogle Scholar
  30. 30.
    Li Q, Guo Y, Xuan YT, Lowenstein CJ, Stevenson SC, Prabhu SD, Wu WJ, Zhu Y, Bolli R (2003) Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ Res 92:741–748PubMedCrossRefGoogle Scholar
  31. 31.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705 10.1038/3507058735070587[pii]PubMedCrossRefGoogle Scholar
  32. 32.
    Padin-Iruegas ME, Misao Y, Davis ME, Segers VF, Esposito G, Tokunou T, Urbanek K, Hosoda T, Rota M, Anversa P, Leri A, Lee RT, Kajstura J (2009) Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120:876–887. doi: 10.1161/CIRCULATIONAHA.109.852285 PubMedCrossRefGoogle Scholar
  33. 33.
    Pravenec M, Zidek V, Landa V, Simakova M, Mlejnek P, Silhavy J, Maxova M, Kazdova L, Seidman JG, Seidman CE, Eminaga S, Gorham J, Wang J, Kurtz TW (2011) Age-related autocrine diabetogenic effects of transgenic resistin in spontaneously hypertensive rats: gene expression profile analysis. Physiol Genomics. doi: 10.1152/physiolgenomics.00112.2010
  34. 34.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709 10.1126/science.1092053302/5651/1704[pii]PubMedCrossRefGoogle Scholar
  35. 35.
    Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S, Ferreira-Martins J, Fiumana E, Rastaldo R, Arcarese ML, Mitchell TS, Boni A, Bolli R, Urbanek K, Hosoda T, Anversa P, Leri A, Kajstura J (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103:107–116. doi: 10.1161/CIRCRESAHA.108.178525 PubMedCrossRefGoogle Scholar
  36. 36.
    Schuh A, Liehn EA, Sasse A, Schneider R, Neuss S, Weber C, Kelm M, Merx MW (2009) Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Res Cardiol 104:403–411. doi: 10.1007/s00395-008-0763-7 PubMedCrossRefGoogle Scholar
  37. 37.
    Stein AB, Tiwari S, Thomas P, Hunt G, Levent C, Stoddard MF, Tang XL, Bolli R, Dawn B (2007) Effects of anesthesia on echocardiographic assessment of left ventricular structure and function in rats. Basic Res Cardiol 102:28–41. doi: 10.1007/s00395-006-0627-y PubMedCrossRefGoogle Scholar
  38. 38.
    Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305. doi: 10.1161/CIRCULATIONAHA.109.871905 PubMedCrossRefGoogle Scholar
  39. 39.
    Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, Losordo DW, Qin G (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104:1209–1216. doi: 10.1161/CIRCRESAHA.109.197723 PubMedCrossRefGoogle Scholar
  40. 40.
    Tseng A, Stabila J, McGonnigal B, Yano N, Yang MJ, Tseng YT, Davol PA, Lum LG, Padbury JF, Zhao TC (2010) Effect of disruption of Akt-1 of lin(-)c-kit(+) stem cells on myocardial performance in infarcted heart. Cardiovasc Res 87:704–712. doi: 10.1093/cvr/cvq110 PubMedCrossRefGoogle Scholar
  41. 41.
    Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103:9226–9231. doi: 10.1073/pnas.0600635103 PubMedCrossRefGoogle Scholar
  42. 42.
    Yang B, Larson DF, Watson R (1999) Age-related left ventricular function in the mouse: analysis based on in vivo pressure-volume relationships. Am J Physiol 277:H1906–H1913PubMedGoogle Scholar
  43. 43.
    Zuba-Surma EK, Guo Y, Taher H, Sanganalmath SK, Hunt G, Vincent RJ, Kucia M, Abdel-Latif A, Tang XL, Ratajczak MZ, Dawn B, Bolli R (2010) Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodeling after myocardial infarction. J Cell Mol Med. doi: 10.1111/j.1582-4934.2010.01126.x

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Qianhong Li
    • 1
  • Yiru Guo
    • 1
  • Qinghui Ou
    • 1
  • Ning Chen
    • 1
  • Wen-Jian Wu
    • 1
  • Fangping Yuan
    • 1
  • Erin O’Brien
    • 1
  • Tao Wang
    • 1
  • Li Luo
    • 1
  • Gregory N. Hunt
    • 1
  • Xiaoping Zhu
    • 1
  • Roberto Bolli
    • 1
    Email author
  1. 1.Division of Cardiovascular MedicineUniversity of LouisvilleLouisvilleUSA

Personalised recommendations