Basic Research in Cardiology

, Volume 106, Issue 3, pp 343–354

Acute erythropoietin cardioprotection is mediated by endothelial response

  • Ruifeng Teng
  • John W. Calvert
  • Nathawut Sibmooh
  • Barbora Piknova
  • Norio Suzuki
  • Junhui Sun
  • Kevin Martinez
  • Masayuki Yamamoto
  • Alan N. Schechter
  • David J. Lefer
  • Constance Tom Noguchi
Original Contribution


Increasing evidence indicates that high levels of serum erythropoietin (Epo) can lessen ischemia–reperfusion injury in the heart and multiple cardiac cell types have been suggested to play a role in this Epo effect. To clarify the mechanisms underlying this cardioprotection, we explored Epo treatment of coronary artery endothelial cells and Epo cardioprotection in a Mus musculus model with Epo receptor expression restricted to hematopoietic and endothelial cells (ΔEpoR). Epo stimulation of coronary artery endothelial cells upregulated endothelial nitric oxide synthase (eNOS) activity in vitro and in vivo, and enhanced nitric oxide (NO) production that was determined directly by real-time measurements of gaseous NO release. Epo stimulated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathways, and inhibition of PI3K, but not MEK activity, blocked Epo-induced NO production. To verify the potential of this Epo effect in cardioprotection in vivo, ΔEpoR-mice with Epo response in heart restricted to endothelium were treated with Epo. These mice exhibited a similar increase in eNOS phosphorylation in coronary artery endothelium as that found in wild type (WT) mice. In addition, in both WT- and ΔEpoR-mice, exogenous Epo treatment prior to myocardial ischemia provided comparable protection. These data provide the first evidence that endothelial cell response to Epo is sufficient to achieve an acute cardioprotective effect. The immediate response of coronary artery endothelial cells to Epo stimulation by NO production may be a critical mechanism underlying this Epo cardioprotection.


Endothelial cells Ischemia Myocardial infarction Nitric oxide Endothelial nitric oxide synthase 

Supplementary material

395_2011_158_MOESM1_ESM.pdf (363 kb)
Supplementary material 1 (PDF 364 kb)


  1. 1.
    Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 87:5978–5982. doi:10.1073/pnas.87.15.5978 PubMedCrossRefGoogle Scholar
  2. 2.
    Anter E, Chen K, Shapira OM, Karas RH, Keaney JF Jr (2005) p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ Res 96:1072–1078. doi:10.1161/01.RES.0000168807.63013.56 PubMedCrossRefGoogle Scholar
  3. 3.
    Banerjee D, Rodriguez M, Nag M, Adamson JW (2000) Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int 57:1895–1904. doi:10.1046/j.1523-1755.2000.00039.x PubMedCrossRefGoogle Scholar
  4. 4.
    Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 104:2073–2080. doi:10.1182/blood-2004-02-0744 PubMedCrossRefGoogle Scholar
  5. 5.
    Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115. doi:10.1152/physrev.00017.2002 PubMedGoogle Scholar
  6. 6.
    Bullard AJ, Govewalla P, Yellon DM (2005) Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 100:397–403. doi:10.1007/s00395-005-0537-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Bullard AJ, Yellon DM (2005) Chronic erythropoietin treatment limits infarct-size in the myocardium in vitro. Cardiovasc Drugs Ther 19:333–336. doi:10.1007/s10557-005-4595-5 PubMedCrossRefGoogle Scholar
  8. 8.
    Burger D, Lei M, Geoghegan-Morphet N, Lu X, Xenocostas A, Feng Q (2006) Erythropoietin protects cardiomyocytes from apoptosis via up-regulation of endothelial nitric oxide synthase. Cardiovasc Res 72:51–59. doi:10.1016/j.cardiores.2006.06.026 PubMedCrossRefGoogle Scholar
  9. 9.
    Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia–reperfusion injury. Circulation 108:79–85. doi:10.1161/01.CIR.0000078635.89229.8A PubMedCrossRefGoogle Scholar
  10. 10.
    Cai Z, Semenza GL (2004) Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation 109:2050–2053. doi:10.1161/01.CIR.0000127954.98131.23 PubMedCrossRefGoogle Scholar
  11. 11.
    Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705. doi:10.2337/db07-1098 PubMedCrossRefGoogle Scholar
  12. 12.
    Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M (2003) Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 100:4802–4806. doi:10.1073/pnas.0630444100 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT (2007) Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 282:25875–25883. doi:10.1074/jbc.M701988200 PubMedCrossRefGoogle Scholar
  14. 14.
    Contaldo C, Elsherbiny A, Lindenblatt N, Plock JA, Trentz O, Giovanoli P, Menger MD, Wanner GA (2009) Erythropoietin enhances oxygenation in critically perfused tissue through modulation of nitric oxide synthase. Shock 31:599–606. doi:10.1097/SHK.0b013e31818b9cc4 PubMedCrossRefGoogle Scholar
  15. 15.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605. doi:10.1038/21224 PubMedCrossRefGoogle Scholar
  16. 16.
    Gao E, Boucher M, Chuprun JK, Zhou RH, Eckhart AD, Koch WJ (2007) Darbepoetin alfa, a long-acting erythropoietin analog, offers novel and delayed cardioprotection for the ischemic heart. Am J Physiol Heart Circ Physiol 293:H60–H68. doi:10.1152/ajpheart.00227.2007 PubMedCrossRefGoogle Scholar
  17. 17.
    Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, Tourmen Y, Henrion D, Furber A, Prunier F (2011) Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol 106:147–162. doi:10.1007/s00395-010-0130-3 PubMedCrossRefGoogle Scholar
  18. 18.
    Greif DM, Kou R, Michel T (2002) Site-specific dephosphorylation of endothelial nitric oxide synthase by protein phosphatase 2A: evidence for crosstalk between phosphorylation sites. Biochemistry 41:15845–15853. doi:10.1021/bi026732g PubMedCrossRefGoogle Scholar
  19. 19.
    Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4 PubMedCrossRefGoogle Scholar
  20. 20.
    Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242 PubMedCrossRefGoogle Scholar
  21. 21.
    Kertesz N, Wu J, Chen TH, Sucov HM, Wu H (2004) The role of erythropoietin in regulating angiogenesis. Dev Biol 276:101–110. doi:10.1016/j.ydbio.2004.08.025 PubMedCrossRefGoogle Scholar
  22. 22.
    Kleinert H, Schwarz PM, Forstermann U (2003) Regulation of the expression of inducible nitric oxide synthase. Biol Chem 384:1343–1364. doi:10.1515/BC.2003.152 PubMedCrossRefGoogle Scholar
  23. 23.
    Mihov D, Bogdanov N, Grenacher B, Gassmann M, Zund G, Bogdanova A, Tavakoli R (2009) Erythropoietin protects from reperfusion-induced myocardial injury by enhancing coronary endothelial nitric oxide production. Eur J Cardiothorac Surg 35:839–846. doi:10.1016/j.ejcts.2008.12.049 (discussion 846)PubMedCrossRefGoogle Scholar
  24. 24.
    Moon C, Krawczyk M, Ahn D, Ahmet I, Paik D, Lakatta EG, Talan MI (2003) Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA 100:11612–11617. doi:10.1073/pnas.1930406100 PubMedCrossRefGoogle Scholar
  25. 25.
    Moon C, Krawczyk M, Paik D, Lakatta EG, Talan MI (2005) Cardioprotection by recombinant human erythropoietin following acute experimental myocardial infarction: dose response and therapeutic window. Cardiovasc Drugs Ther 19:243–250. doi:10.1007/s10557-005-3189-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Nakano M, Satoh K, Fukumoto Y, Ito Y, Kagaya Y, Ishii N, Sugamura K, Shimokawa H (2007) Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 100:662–669. doi:10.1161/01.RES.0000260179.43672.fe PubMedCrossRefGoogle Scholar
  27. 27.
    Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, Matsumoto A, Stamler JS, Koch WJ (2004) Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 279:20655–20662. doi:10.1074/jbc.M314099200 PubMedCrossRefGoogle Scholar
  28. 28.
    Parsa CJ, Matsumoto A, Kim J, Riel RU, Pascal LS, Walton GB, Thompson RB, Petrofski JA, Annex BH, Stamler JS, Koch WJ (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112:999–1007. doi:10.1172/JCI200318200 PubMedGoogle Scholar
  29. 29.
    Rui T, Feng Q, Lei M, Peng T, Zhang J, Xu M, Abel ED, Xenocostas A, Kvietys PR (2005) Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1. Cardiovasc Res 65:719–727. doi:10.1016/j.cardiores.2004.11.019 PubMedCrossRefGoogle Scholar
  30. 30.
    Ruschitzka FT, Wenger RH, Stallmach T, Quaschning T, de Wit C, Wagner K, Labugger R, Kelm M, Noll G, Rulicke T, Shaw S, Lindberg RL, Rodenwaldt B, Lutz H, Bauer C, Luscher TF, Gassmann M (2000) Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci USA 97:11609–11613. doi:10.1073/pnas.97.21.11609 PubMedCrossRefGoogle Scholar
  31. 31.
    Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, Karibe A, Minegishi N, Suzuki N, Yamamoto M, Ono M, Watanabe J, Shirato K, Ishii N, Sugamura K, Shimokawa H (2006) Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 113:1442–1450. doi:10.1161/CIRCULATIONAHA.105.583732 PubMedCrossRefGoogle Scholar
  32. 32.
    Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. doi:10.1016/j.cardiores.2003.09.019 PubMedCrossRefGoogle Scholar
  33. 33.
    Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75:315–326. doi:10.1016/j.cardiores.2007.04.031 PubMedCrossRefGoogle Scholar
  34. 34.
    Shi Y, Rafiee P, Su J, Pritchard KA Jr, Tweddell JS, Baker JE (2004) Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels. Basic Res Cardiol 99:173–182. doi:10.1007/s00395-004-0455-x PubMedCrossRefGoogle Scholar
  35. 35.
    Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429 PubMedCrossRefGoogle Scholar
  36. 36.
    Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163. doi:10.1161/CIRCRESAHA.107.155879 PubMedCrossRefGoogle Scholar
  37. 37.
    Suzuki N, Ohneda O, Takahashi S, Higuchi M, Mukai HY, Nakahata T, Imagawa S, Yamamoto M (2002) Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 100:2279–2288. doi:10.1182/blood-2002-01-0124 PubMedCrossRefGoogle Scholar
  38. 38.
    Tada H, Kagaya Y, Takeda M, Ohta J, Asaumi Y, Satoh K, Ito K, Karibe A, Shirato K, Minegishi N, Shimokawa H (2006) Endogenous erythropoietin system in non-hematopoietic lineage cells plays a protective role in myocardial ischemia/reperfusion. Cardiovasc Res 71:466–477. doi:10.1016/j.cardiores.2006.05.010 PubMedCrossRefGoogle Scholar
  39. 39.
    Urao N, Okigaki M, Yamada H, Aadachi Y, Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi T, Tatsumi T, Matsubara H (2006) Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res 98:1405–1413. doi:10.1161/01.RES.0000224117.59417.f3 PubMedCrossRefGoogle Scholar
  40. 40.
    Westenbrink BD, Ruifrok WP, Voors AA, Tilton RG, van Veldhuisen DJ, Schoemaker RG, van Gilst WH, de Boer RA (2010) Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovasc Res 87:30–39. doi:10.1093/cvr/cvq041 PubMedCrossRefGoogle Scholar
  41. 41.
    Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO (2004) Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia–reperfusion injury. FASEB J 18:1031–1033. doi:10.1096/fj.03-1289fje PubMedGoogle Scholar
  42. 42.
    Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605PubMedGoogle Scholar
  43. 43.
    Wyatt AW, Steinert JR, Wheeler-Jones CP, Morgan AJ, Sugden D, Pearson JD, Sobrevia L, Mann GE (2002) Early activation of the p42/p44MAPK pathway mediates adenosine-induced nitric oxide production in human endothelial cells: a novel calcium-insensitive mechanism. FASEB J 16:1584–1594. doi:10.1096/fj.01-0125com PubMedCrossRefGoogle Scholar
  44. 44.
    Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Bolli R (2007) Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription1/3 pathway. Circulation 116:535–544. doi:10.1161/CIRCULATIONAHA.107.689471 PubMedCrossRefGoogle Scholar
  45. 45.
    Youn JY, Wang T, Cai H (2009) An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production. Circ Res 104:50–59. doi:10.1161/CIRCRESAHA.108.178467 PubMedCrossRefGoogle Scholar
  46. 46.
    Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516PubMedGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Ruifeng Teng
    • 1
  • John W. Calvert
    • 2
  • Nathawut Sibmooh
    • 3
  • Barbora Piknova
    • 1
  • Norio Suzuki
    • 4
  • Junhui Sun
    • 5
  • Kevin Martinez
    • 1
  • Masayuki Yamamoto
    • 4
  • Alan N. Schechter
    • 1
  • David J. Lefer
    • 2
  • Constance Tom Noguchi
    • 1
  1. 1.Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart CenterEmory University School of MedicineAtlantaUSA
  3. 3.Department of Pharmacology, Faculty of ScienceMahidol UniversityBangkokThailand
  4. 4.Department of Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
  5. 5.Translational Medicine Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations