Advertisement

Basic Research in Cardiology

, Volume 105, Issue 6, pp 687–701 | Cite as

Endothelial glycocalyx and coronary vascular permeability: the fringe benefit

  • Bernhard F. BeckerEmail author
  • Daniel Chappell
  • Matthias Jacob
Invited Review

Abstract

Current concepts of vascular permeability are largely still based on the Starling principle of 1896. Starling’s contribution to understanding vascular fluid homeostasis comes from realising that the transport of fluid to and from the interstitial space of peripheral tissues follows the balance between opposing oncotic and hydrostatic pressures. It is presumed that in peripheral tissues fluid is readily filtered from blood to tissues at the arterial/arteriolar side of the circulation and largely reabsorbed at the venular/venous aspect, excess fluid being removed from the tissue by the lymphatic system. This balance is determined particularly by the properties of the vascular barrier. Recent studies have shown that the endothelial glycocalyx, located with a thickness of at least 200 nm on the luminal side of healthy vasculature, plays a vital role in vascular permeability by constituting the vascular barrier together with the endothelial cells themselves. While water and electrolytes can freely pass through the glycocalyx, plasma proteins, especially albumin, interact strongly. Binding and intercalating plasma constituents with the structural elements of the glycocalyx creates the so-called endothelial surface layer. This is the actual interface between flowing blood and the endothelial cell membrane in vivo. The oncotic pressure difference pertinent to fluid homeostasis is not built up between the intravascular and the interstitial tissue spaces, but within a small protein-free zone beneath the glycocalyx surface layer. This explains why perturbation of the glycocalyx leads to a breakdown of both fluid and protein handling in the coronary vascular bed. Preventing damage to the glycocalyx seems to be a promising goal in cardioprotection in many clinical scenarios, including acute ischaemia, hypoxia and inflammation, and chronic vascular disease as in atherosclerosis, diabetes and hypertension.

Keywords

Albumin Antithrombin Endothelium Glycocalyx Heparanase Hydraulic conductance Mast cell Permeability Tissue factor Vascular barrier 

References

  1. 1.
    Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445:473–486PubMedGoogle Scholar
  2. 2.
    Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557:889–907PubMedCrossRefGoogle Scholar
  3. 3.
    Annecke T, Chappell D, Chen C, Jacob M, Welsch U, Sommerhoff CP, Rehm M, Conzen PF, Becker BF (2010) Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br J Anaesth 104:414–421PubMedCrossRefGoogle Scholar
  4. 4.
    Areskog NH, Arturson G, Grotte G, Wallenius G (1964) Studies on heart lymph. Arch Dis Child 39:182–186PubMedCrossRefGoogle Scholar
  5. 5.
    Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M (2010) Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 87:300–310PubMedCrossRefGoogle Scholar
  6. 6.
    Beresewicz A, Czarnowska E, Maczewski M (1998) Ischemic preconditioning and superoxide dismutase protect against endothelial dysfunction and endothelium glycocalyx disruption in the postischemic guinea-pig hearts. Mol Cell Biochem 186:87–97PubMedCrossRefGoogle Scholar
  7. 7.
    Brands J, Spaan JA, van den Berg BM, Vink H, VanTeeffelen JW (2010) Acute attenuation of glycocalyx barrier properties increases coronary blood volume independently of coronary flow reserve. Am J Physiol Heart Circ Physiol 298:H515–H523PubMedCrossRefGoogle Scholar
  8. 8.
    Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, Rasmussen MS, Lanng C, Wallin L, Iversen LH, Gramkow CS, Okholm M, Blemmer T, Svendsen PE, Rottensten HH, Thage B, Riis J, Jeppesen IS, Teilum D, Christensen AM, Graungaard B, Pott F (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648PubMedCrossRefGoogle Scholar
  9. 9.
    Breuckmann F, Nassenstein K, Bucher C, Konietzka I, Kaiser G, Konorza T, Naber C, Skyschally A, Gres P, Heusch G, Erbel R, Barkhausen J (2009) Systematic analysis of functional and structural changes after coronary microembolization: a cardiac magnetic resonance imaging study. JACC Cardiovasc Imaging 2:121–130PubMedCrossRefGoogle Scholar
  10. 10.
    Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P, Becker BF (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999PubMedCrossRefGoogle Scholar
  11. 11.
    Bruegger D, Rehm M, Abicht J, Paul JO, Stoeckelhuber M, Pfirrmann M, Reichart B, Becker BF, Christ F (2009) Shedding of the endothelial glycocalyx during cardiac surgery: on-pump versus off-pump coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 138:1445–1447PubMedCrossRefGoogle Scholar
  12. 12.
    Bruegger D, Rehm M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2008) Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts. Crit Care 12:R73PubMedCrossRefGoogle Scholar
  13. 13.
    Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190:255–266PubMedCrossRefGoogle Scholar
  14. 14.
    Chappell D, Doerfler N, Jacob M, Rehm M, Welsch U, Conzen P, Becker BF (2010) Glycocalyx protection reduces leukocyte adhesion following ischemia/reperfusion. Shock 34:133–139PubMedCrossRefGoogle Scholar
  15. 15.
    Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89PubMedCrossRefGoogle Scholar
  16. 16.
    Chappell D, Jacob M, Becker BF, Hofmann-Kiefer K, Conzen P, Rehm M (2008) Expedition glycocalyx: a newly discovered “Great Barrier Reef”. Anaesthesist 57:959–969PubMedCrossRefGoogle Scholar
  17. 17.
    Chappell D, Jacob M, Hofmann-Kiefer K, Bruegger D, Rehm M, Conzen P, Welsch U, Becker BF (2007) Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology 107:776–784PubMedCrossRefGoogle Scholar
  18. 18.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M (2008) A rational approach to perioperative fluid management. Anesthesiology 109:723–740PubMedCrossRefGoogle Scholar
  19. 19.
    Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P, Becker BF (2009) Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res 83:388–396PubMedCrossRefGoogle Scholar
  20. 20.
    Chappell D, Jacob M, Paul O, Mehringer L, Newman W, Becker BF (2008) Impaired glycocalyx barrier properties and increased capillary tube haematocrit. J Physiol 586:4585–4586PubMedCrossRefGoogle Scholar
  21. 21.
    Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M, Conzen P, Becker BF (2009) The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 104:1313–1317PubMedCrossRefGoogle Scholar
  22. 22.
    Chappell D, Jacob M, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2008) Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx. Biol Chem 389:79–82PubMedCrossRefGoogle Scholar
  23. 23.
    Collard CD, Gelman S (2001) Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94:1133–1138PubMedCrossRefGoogle Scholar
  24. 24.
    Curry FE, Michel CC (1980) A fiber matrix model of capillary permeability. Microvasc Res 20:96–99PubMedCrossRefGoogle Scholar
  25. 25.
    Curry FR (2005) Atrial natriuretic peptide: an essential physiological regulator of transvascular fluid, protein transport, and plasma volume. J Clin Invest 115:1458–1461PubMedCrossRefGoogle Scholar
  26. 26.
    Curry FR, Adamson RH (2010) Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 87:218–229PubMedCrossRefGoogle Scholar
  27. 27.
    Curry FR, Rygh CB, Karlsen T, Wiig H, Adamson RH, Clark JF, Lin YC, Gassner B, Thorsen F, Moen I, Tenstad O, Kuhn M, Reed RK (2010) Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume. J Physiol 588:325–339PubMedCrossRefGoogle Scholar
  28. 28.
    Czarnowska E, Karwatowska-Prokopczuk E (1995) Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Basic Res Cardiol 90:357–364PubMedCrossRefGoogle Scholar
  29. 29.
    Danielli JF (1940) Capillary permeability and oedema in the perfused frog. J Physiol 98:109–129PubMedGoogle Scholar
  30. 30.
    Desai KV, Laine GA, Stewart RH, Cox CS Jr, Quick CM, Allen SJ, Fischer UM (2008) Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am J Physiol Heart Circ Physiol 294:H2428–H2434PubMedCrossRefGoogle Scholar
  31. 31.
    Desjardins C, Duling BR (1990) Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol 258:H647–H654PubMedGoogle Scholar
  32. 32.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456PubMedCrossRefGoogle Scholar
  33. 33.
    Dongaonkar RM, Stewart RH, Geissler HJ, Laine GA (2010) Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res 87:331–339PubMedCrossRefGoogle Scholar
  34. 34.
    Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097PubMedGoogle Scholar
  35. 35.
    Dull RO, Mecham I, McJames S (2007) Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 292:L1452–L1458PubMedCrossRefGoogle Scholar
  36. 36.
    Esmon CT (2002) Protein C pathway in sepsis. Ann Med 34:598–605PubMedCrossRefGoogle Scholar
  37. 37.
    Field MC, Lumb JH, Adung’a VO, Jones NG, Engstler M (2009) Macromolecular trafficking and immune evasion in african trypanosomes. Int Rev Cell Mol Biol 278:1–67PubMedCrossRefGoogle Scholar
  38. 38.
    Gebhard C, Akhmedov A, Mocharla P, Angstenberger J, Sahbai S, Camici GG, Luscher TF, Tanner FC (2010) PDGF-CC induces tissue factor expression: role of PDGF receptor alpha/beta. Basic Res Cardiol 105:349–356PubMedCrossRefGoogle Scholar
  39. 39.
    Gilles S, Zahler S, Welsch U, Sommerhoff CP, Becker BF (2003) Release of TNF-alpha during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc Res 60:608–616PubMedCrossRefGoogle Scholar
  40. 40.
    Gotte M (2003) Syndecans in inflammation. FASEB J 17:575–591PubMedCrossRefGoogle Scholar
  41. 41.
    Heindl B, Reichle FM, Zahler S, Conzen PF, Becker BF (1999) Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology 91:521–530PubMedCrossRefGoogle Scholar
  42. 42.
    Huxley VH, Curry FE (1985) Albumin modulation of capillary permeability: test of an adsorption mechanism. Am J Physiol 248:H264–H273PubMedGoogle Scholar
  43. 43.
    Huxley VH, Curry FE (1987) Effect of superfusate albumin on single capillary hydraulic conductivity. Am J Physiol 252:H395–H401PubMedGoogle Scholar
  44. 44.
    Huxley VH, Curry FE (1991) Differential actions of albumin and plasma on capillary solute permeability. Am J Physiol 260:H1645–H1654PubMedGoogle Scholar
  45. 45.
    Huxley VH, Tucker VL, Verburg KM, Freeman RH (1987) Increased capillary hydraulic conductivity induced by atrial natriuretic peptide. Circ Res 60:304–307PubMedGoogle Scholar
  46. 46.
    Huxley VH, Wang J (2010) Cardiovascular sex differences influencing microvascular exchange. Cardiovasc Res 87:230–242PubMedCrossRefGoogle Scholar
  47. 47.
    Jacob M, Bruegger D, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586PubMedCrossRefGoogle Scholar
  48. 48.
    Jacob M, Bruegger D, Rehm M, Welsch U, Conzen P, Becker BF (2006) Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 104:1223–1231PubMedCrossRefGoogle Scholar
  49. 49.
    Jacob M, Chappell D, Conzen P, Finsterer U, Krafft A, Becker BF, Rehm M (2008) Impact of the time window on plasma volume measurement with indocyanine green. Physiol Meas 29:761–770PubMedCrossRefGoogle Scholar
  50. 50.
    Jacob M, Chappell D, Rehm M (2007) Clinical update: perioperative fluid management. Lancet 369:1984–1986PubMedCrossRefGoogle Scholar
  51. 51.
    Jacob M, Chappell D, Rehm M (2009) Third space—fact or fiction? Best Pract Res Clin Anaesthesiol 23:145–157PubMedCrossRefGoogle Scholar
  52. 52.
    Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Rehm M, Bruegger D, Kaczmarek I, Conzen P, Becker BF (2010) Perspectives in microvascular fluid handling: does distribution of coagulation factors in human myocardium comply with plasma extravasation in venular coronary segments? J Vasc Res (in press)Google Scholar
  53. 53.
    Jacob M, Conzen P, Finsterer U, Krafft A, Becker BF, Rehm M (2007) Technical and physiological background of plasma volume measurement with indocyanine green: a clarification of misunderstandings. J Appl Physiol 102:1235–1242PubMedCrossRefGoogle Scholar
  54. 54.
    Jacob M, Paul O, Mehringer L, Chappell D, Rehm M, Welsch U, Kaczmarek I, Conzen P, Becker BF (2009) Albumin augmentation improves condition of guinea pig hearts after 4 hours of cold ischemia. Transplantation 87:956–965PubMedCrossRefGoogle Scholar
  55. 55.
    Jacob M, Rehm M, Loetsch M, Paul JO, Bruegger D, Welsch U, Conzen P, Becker BF (2007) The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res 44:435–443PubMedCrossRefGoogle Scholar
  56. 56.
    Juchem G, Weiss DR, Gansera B, Kemkes BM, Mueller-Hoecker J, Nees S (2010) Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. Am J Physiol Heart Circ Physiol 298:H754–H770PubMedCrossRefGoogle Scholar
  57. 57.
    Kanwar S, Hickey MJ, Kubes P (1998) Postischemic inflammation: a role for mast cells in intestine but not in skeletal muscle. Am J Physiol 275:G212–G218PubMedGoogle Scholar
  58. 58.
    Kellman P, Aletras AH, Mancini C, McVeigh ER, Arai AE (2007) T2-prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo. Magn Reson Med 57:891–897PubMedCrossRefGoogle Scholar
  59. 59.
    Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314PubMedCrossRefGoogle Scholar
  60. 60.
    Kupatt C, Habazettl H, Zahler S, Weber C, Becker BF, Messmer K, Gerlach E (1997) ACE-inhibition prevents postischemic coronary leukocyte adhesion and leukocyte-dependent reperfusion injury. Cardiovasc Res 36:386–395PubMedCrossRefGoogle Scholar
  61. 61.
    Langdell RD, Bowersox LW, Weaver RA, Gibson WS (1960) Coagulation properties of canine thoracic-duct lymph. Am J Physiol 199:626–628PubMedGoogle Scholar
  62. 62.
    Levick JR (1991) Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol 76:825–857PubMedGoogle Scholar
  63. 63.
    Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87:198–210PubMedCrossRefGoogle Scholar
  64. 64.
    Lieleg O, Baumgartel RM, Bausch AR (2009) Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys J 97:1569–1577PubMedCrossRefGoogle Scholar
  65. 65.
    Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359:1812–1818PubMedCrossRefGoogle Scholar
  66. 66.
    Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR (1990) Postoperative fluid overload: not a benign problem. Crit Care Med 18:728–733PubMedCrossRefGoogle Scholar
  67. 67.
    Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25:1773–1783PubMedGoogle Scholar
  68. 68.
    McDonagh PF, Rauzzino MJ (1993) Stimulated leukocyte adhesion in coronary microcirculation is reduced by a calcium antagonist. Am J Physiol 265:H476–H483PubMedGoogle Scholar
  69. 69.
    Mehlhorn U, Geissler HJ, Laine GA, Allen SJ (2001) Myocardial fluid balance. Eur J Cardiothorac Surg 20:1220–1230PubMedCrossRefGoogle Scholar
  70. 70.
    Meuwese MC, Mooij HL, Nieuwdorp M, van LB, Marck R, Vink H, Kastelein JJ, Stroes ES (2009) Partial recovery of the endothelial glycocalyx upon rosuvastatin therapy in patients with heterozygous familial hypercholesterolemia. J Lipid Res 50:148–153Google Scholar
  71. 71.
    Michel CC, Curry FR (2009) Glycocalyx volume: a critical review of tracer dilution methods for its measurement. Microcirculation 16:213–219PubMedCrossRefGoogle Scholar
  72. 72.
    Miura T, Miki T (2008) Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol 103:501–513PubMedCrossRefGoogle Scholar
  73. 73.
    Mulivor AW, Lipowsky HH (2004) Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 286:H1672–H1680PubMedCrossRefGoogle Scholar
  74. 74.
    Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M (2008) Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 30:623–627PubMedCrossRefGoogle Scholar
  75. 75.
    Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, Stroes ES, Vink H (2008) Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol 104:845–852PubMedCrossRefGoogle Scholar
  76. 76.
    Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486PubMedCrossRefGoogle Scholar
  77. 77.
    Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103:25–32PubMedCrossRefGoogle Scholar
  78. 78.
    Noble MI, Drake-Holland AJ, Vink H (2008) Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM 101:513–518PubMedCrossRefGoogle Scholar
  79. 79.
    Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355:228–233PubMedCrossRefGoogle Scholar
  80. 80.
    Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6:633–643PubMedCrossRefGoogle Scholar
  81. 81.
    Platts SH, Duling BR (2004) Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ Res 94:77–82PubMedCrossRefGoogle Scholar
  82. 82.
    Platts SH, Linden J, Duling BR (2003) Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation. Am J Physiol Heart Circ Physiol 284:H2360–H2367PubMedGoogle Scholar
  83. 83.
    Potter DR, Damiano ER (2008) The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 102:770–776PubMedCrossRefGoogle Scholar
  84. 84.
    Potter DR, Jiang J, Damiano ER (2009) The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res 104:1318–1325PubMedCrossRefGoogle Scholar
  85. 85.
    Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 1:1–40CrossRefGoogle Scholar
  86. 86.
    Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666PubMedCrossRefGoogle Scholar
  87. 87.
    Raschke P, Becker BF, Leipert B, Schwartz LM, Zahler S, Gerlach E (1993) Postischemic dysfunction of the heart induced by small numbers of neutrophils via formation of hypochlorous acid. Basic Res Cardiol 88:321–339PubMedGoogle Scholar
  88. 88.
    Rehm M, Bruegger D, Christ F, Thiel M, Conzen P, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Reichart B, Peter K, Becker BF (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906PubMedCrossRefGoogle Scholar
  89. 89.
    Rehm M, Haller M, Orth V, Kreimeier U, Jacob M, Dressel H, Mayer S, Brechtelsbauer H, Finsterer U (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856PubMedCrossRefGoogle Scholar
  90. 90.
    Rehm M, Orth V, Kreimeier U, Thiel M, Haller M, Brechtelsbauer H, Finsterer U (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92:657–664PubMedCrossRefGoogle Scholar
  91. 91.
    Rehm M, Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M, Becker BF (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 100:1211–1223PubMedCrossRefGoogle Scholar
  92. 92.
    Reil JC, Gilles S, Zahler S, Brandl A, Drexler H, Hultner L, Matrisian LM, Welsch U, Becker BF (2007) Insights from knock-out models concerning postischemic release of TNFalpha from isolated mouse hearts. J Mol Cell Cardiol 42:133–141PubMedCrossRefGoogle Scholar
  93. 93.
    Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359PubMedCrossRefGoogle Scholar
  94. 94.
    Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW (2005) A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 45:1775–1780PubMedCrossRefGoogle Scholar
  95. 95.
    Rubio-Gayosso I, Platts SH, Duling BR (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 290:H2247–H2256PubMedCrossRefGoogle Scholar
  96. 96.
    Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M (2005) Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest 115:1666–1674PubMedCrossRefGoogle Scholar
  97. 97.
    Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO (2009) Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx. Cardiovasc Res 83:24–33PubMedCrossRefGoogle Scholar
  98. 98.
    Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW (2007) Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 18:2885–2893PubMedCrossRefGoogle Scholar
  99. 99.
    Stafford-Smith M, Lefrak EA, Qazi AG, Welsby IJ, Barber L, Hoeft A, Dorenbaum A, Mathias J, Rochon JJ, Newman MF (2005) Efficacy and safety of heparinase I versus protamine in patients undergoing coronary artery bypass grafting with and without cardiopulmonary bypass. Anesthesiology 103:229–240PubMedCrossRefGoogle Scholar
  100. 100.
    Starling E (1896) On the absorption of fluid from the connective tissue spaces. J Physiol 19:312–326PubMedGoogle Scholar
  101. 101.
    Szotowski B, Antoniak S, Rauch U (2006) Alternatively spliced tissue factor: a previously unknown piece in the puzzle of hemostasis. Trends Cardiovasc Med 16:177–182PubMedCrossRefGoogle Scholar
  102. 102.
    Tarbell JM (2010) Shear stress and the endothelial transport barrier. Cardiovasc Res 87:320–330PubMedCrossRefGoogle Scholar
  103. 103.
    Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259:339–350PubMedCrossRefGoogle Scholar
  104. 104.
    Tucker VL (1996) Plasma ANP levels and protein extravasation during graded expansion with equilibrated whole blood. Am J Physiol 271:R601–R609PubMedGoogle Scholar
  105. 105.
    van den Berg BM, Spaan JA, Vink H (2009) Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 457:1199–1206PubMedCrossRefGoogle Scholar
  106. 106.
    van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92:592–594PubMedCrossRefGoogle Scholar
  107. 107.
    VanTeeffelen JW, Brands J, Vink H (2010) Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine. Cardiovasc Res 87:311–319PubMedCrossRefGoogle Scholar
  108. 108.
    Vink H, Constantinescu AA, Spaan JA (2000) Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101:1500–1502PubMedGoogle Scholar
  109. 109.
    Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581–589PubMedGoogle Scholar
  110. 110.
    Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278:H285–H289PubMedGoogle Scholar
  111. 111.
    Vogel J, Sperandio M, Pries AR, Linderkamp O, Gaehtgens P, Kuschinsky W (2000) Influence of the endothelial glycocalyx on cerebral blood flow in mice. J Cereb Blood Flow Metab 20:1571–1578PubMedCrossRefGoogle Scholar
  112. 112.
    Ward BJ, Donnelly JL (1993) Hypoxia induced disruption of the cardiac endothelial glycocalyx: implications for capillary permeability. Cardiovasc Res 27:384–389PubMedCrossRefGoogle Scholar
  113. 113.
    Ward BJ, Firth JA (1989) Effect of hypoxia on endothelial morphology and interendothelial junctions in the isolated perfused rat heart. J Mol Cell Cardiol 21:1337–1347PubMedCrossRefGoogle Scholar
  114. 114.
    Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167PubMedCrossRefGoogle Scholar
  115. 115.
    Yuan W, Li G, Zeng M, Fu BM (2010) Modulation of the blood-brain barrier permeability by plasma glycoprotein orosomucoid. Microvasc Res 80:148–157PubMedCrossRefGoogle Scholar
  116. 116.
    Zahler S, Becker BF, Raschke P, Gerlach E (1994) Stimulation of endothelial adenosine A1 receptors enhances adhesion of neutrophils in the intact guinea pig coronary system. Cardiovasc Res 28:1366–1372PubMedCrossRefGoogle Scholar
  117. 117.
    Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang C, Wu J, Xu X, Potter BJ, Gao X (2010) Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 105:453–464PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Bernhard F. Becker
    • 1
  • Daniel Chappell
    • 2
  • Matthias Jacob
    • 2
  1. 1.Walter-Brendel-Centre of Experimental MedicineLudwig-Maximilians-University MunichMunichGermany
  2. 2.Clinic of AnesthesiologyLudwig-Maximilians-University MunichMunichGermany

Personalised recommendations