Basic Research in Cardiology

, Volume 105, Issue 4, pp 545–556 | Cite as

C-kit+ CD45− cells found in the adult human heart represent a population of endothelial progenitor cells

  • Joakim Sandstedt
  • Marianne Jonsson
  • Anders Lindahl
  • Anders Jeppsson
  • Julia Asp
Original Contribution


Although numerous reports support the existence of stem cells in the adult heart, few studies have been conducted using human cardiac tissue. Therefore, cells from human cardiac atrial biopsies were analyzed regarding progenitor properties. Expression of stem cell markers was analyzed using fluorescence-activated cell sorting. This identified a small population of C-kit+ cells, which could be further subdivided based on expression of CD45. The C-kit+ CD45+ population was determined to be of mast cell identity, while the C-kit+ CD45− population expressed mRNA of the endothelial lineage. Since the number of cells obtainable from biopsies was limited, a comparison between directly isolated and monolayer and explant cultured cells, respectively, was carried out. While both cultures retained a small population of mast cells, only monolayer culture produced a stable and relatively high percentage of C-kit+ CD45− cells. This population was found to co-express endothelial progenitor cell markers such as CD31, CD34, CXCR4, and FLK-1. The mRNA expression profile was similar to the one from directly isolated cells. When sorted cells were cultured in endothelial differentiation medium, the C-kit+ CD45− population retained its expression of endothelial markers to a large extent, but downregulated progenitor markers, indicating further differentiation into endothelial cells. We have confirmed that the human cardiac atrium contains a small C-kit+ CD45− population expressing markers commonly found on endothelial progenitor cells. The existence of an endothelial progenitor population within the heart might have future implications for developing methods of inducing neovascularization after myocardial infarction.


Stem cells EPC cells C-kit Cardiac tissue Molecular biology 


  1. 1.
    Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032CrossRefPubMedGoogle Scholar
  2. 2.
    Bamezai A (2004) Mouse Ly-6 proteins and their extended family: markers of cell differentiation and regulators of cell signaling. Arch Immunol Ther Exp 52:255–266Google Scholar
  3. 3.
    Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073CrossRefPubMedGoogle Scholar
  4. 4.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776CrossRefPubMedGoogle Scholar
  5. 5.
    Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Muller P, Bohm M, Cotrufo M, Montagnani S (2008) CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells 26:1723–1731CrossRefPubMedGoogle Scholar
  6. 6.
    Das AV, James J, Zhao X, Rahnenfuhrer J, Ahmad I (2004) Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 273:87–105CrossRefPubMedGoogle Scholar
  7. 7.
    De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, Truffa S, Biglioli P, Napolitano M, Capogrossi MC, Pesce M (2004) SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104:3472–3482CrossRefPubMedGoogle Scholar
  8. 8.
    Doyle B, Sorajja P, Hynes B, Kumar AH, Araoz PA, Stalboerger PG, Miller D, Reed C, Schmeckpeper J, Wang S, Liu C, Terzic A, Kruger D, Riederer S, Caplice NM (2008) Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFbeta1. Stem Cells Dev 17:941–951CrossRefPubMedGoogle Scholar
  9. 9.
    Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F, Kluge R, Kendziorra K, Sabri O, Schuler G, Hambrecht R (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762CrossRefPubMedGoogle Scholar
  10. 10.
    Friedrich EB, Werner C, Walenta K, Bohm M, Scheller B (2009) Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Res Cardiol 104:613–620CrossRefPubMedGoogle Scholar
  11. 11.
    Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Luthra PM (2006) Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 15:305–313CrossRefPubMedGoogle Scholar
  12. 12.
    George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelstein A, Herz I, Miller H, Keren G (2004) Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J 25:1003–1008CrossRefPubMedGoogle Scholar
  13. 13.
    Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G, Verhaar MC, van der Heyden MA, de Kleijn D, Mummery CL, van Veen TA, Sluijter JP, Doevendans PA (2008) TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1:138–149CrossRefGoogle Scholar
  14. 14.
    Gruh I, Beilner J, Blomer U, Schmiedl A, Schmidt-Richter I, Kruse ML, Haverich A, Martin U (2006) No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 113:1326–1334CrossRefPubMedGoogle Scholar
  15. 15.
    Hauswirth AW, Florian S, Schernthaner GH, Krauth MT, Sonneck K, Sperr WR, Valent P (2006) Expression of cell surface antigens on mast cells: mast cell phenotyping. Methods Mol Biol 315:77–90PubMedGoogle Scholar
  16. 16.
    Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189CrossRefPubMedGoogle Scholar
  17. 17.
    Hristov M, Weber C (2006) The therapeutic potential of progenitor cells in ischemic heart disease—past, present and future. Basic Res Cardiol 101:1–7CrossRefPubMedGoogle Scholar
  18. 18.
    Kaminski A, Ma N, Donndorf P, Lindenblatt N, Feldmeier G, Ong LL, Furlani D, Skrabal CA, Liebold A, Vollmar B, Steinhoff G (2008) Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of C-kit+ bone marrow stem cells. Lab Invest 88:58–69CrossRefPubMedGoogle Scholar
  19. 19.
    Katayama N, Shih JP, Nishikawa S, Kina T, Clark SC, Ogawa M (1993) Stage-specific expression of c-kit protein by murine hematopoietic progenitors. Blood 82:2353–2360PubMedGoogle Scholar
  20. 20.
    Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C (2008) Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 103:582–586CrossRefPubMedGoogle Scholar
  21. 21.
    Khoo CP, Valorani MG, Brittan M, Alison MR, Warnes G, Johansson U, Hawa M, Pozzilli P (2009) Characterization of endothelial progenitor cells in the NOD mouse as a source for cell therapies. Diabetes Metab Res Rev 25:89–93CrossRefPubMedGoogle Scholar
  22. 22.
    Kliche S, Waltenberger J (2001) VEGF receptor signaling and endothelial function. IUBMB Life 52:61–66CrossRefPubMedGoogle Scholar
  23. 23.
    Kraling BM, Bischoff J (1998) A simplified method for growth of human microvascular endothelial cells results in decreased senescence and continued responsiveness to cytokines and growth factors. In Vitro Cell Dev Biol Anim 34:308–315CrossRefPubMedGoogle Scholar
  24. 24.
    Kubo H, Jaleel N, Kumarapeli A, Berretta RM, Bratinov G, Shan X, Wang H, Houser SR, Margulies KB (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118:649–657CrossRefPubMedGoogle Scholar
  25. 25.
    Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869CrossRefPubMedGoogle Scholar
  26. 26.
    Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49CrossRefPubMedGoogle Scholar
  27. 27.
    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77CrossRefPubMedGoogle Scholar
  28. 28.
    Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971CrossRefPubMedGoogle Scholar
  29. 29.
    Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114CrossRefPubMedGoogle Scholar
  30. 30.
    Marsboom G, Pokreisz P, Gheysens O, Vermeersch P, Gillijns H, Pellens M, Liu X, Collen D, Janssens S (2008) Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells 26:1017–1026CrossRefPubMedGoogle Scholar
  31. 31.
    Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391CrossRefPubMedGoogle Scholar
  32. 32.
    McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27:623–633CrossRefPubMedGoogle Scholar
  33. 33.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921CrossRefPubMedGoogle Scholar
  34. 34.
    Munoz-Martinez F, Lu P, Cortes-Selva F, Perez-Victoria JM, Jimenez IA, Ravelo AG, Sharom FJ, Gamarro F, Castanys S (2004) Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance. Cancer Res 64:7130–7138CrossRefPubMedGoogle Scholar
  35. 35.
    Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S (1992) Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 92:141–149CrossRefPubMedGoogle Scholar
  36. 36.
    Panchision DM, Chen HL, Pistollato F, Papini D, Ni HT, Hawley TS (2007) Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells 25:1560–1570CrossRefPubMedGoogle Scholar
  37. 37.
    Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278CrossRefPubMedGoogle Scholar
  38. 38.
    Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61CrossRefPubMedGoogle Scholar
  39. 39.
    Pfister O, Oikonomopoulos A, Sereti KI, Sohn RL, Cullen D, Fine GC, Mouquet F, Westerman K, Liao R (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res 103:825–835CrossRefPubMedGoogle Scholar
  40. 40.
    Pouly J, Bruneval P, Mandet C, Proksch S, Peyrard S, Amrein C, Bousseaux V, Guillemain R, Deloche A, Fabiani JN, Menasche P (2008) Cardiac stem cells in the real world. J Thorac Cardiovasc Surg 135:673–678CrossRefPubMedGoogle Scholar
  41. 41.
    Relou IA, Damen CA, van der Schaft DW, Groenewegen G, Griffioen AW (1998) Effect of culture conditions on endothelial cell growth and responsiveness. Tissue Cell 30:525–530CrossRefPubMedGoogle Scholar
  42. 42.
    Schober A, Karshovska E, Zernecke A, Weber C (2006) SDF-1alpha-mediated tissue repair by stem cells: a promising tool in cardiovascular medicine? Trends Cardiovasc Med 16:103–108CrossRefPubMedGoogle Scholar
  43. 43.
    Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW, Weber C (2008) Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 103:69–77CrossRefPubMedGoogle Scholar
  44. 44.
    Shantsila E, Watson T, Lip GY (2007) Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 49:741–752CrossRefPubMedGoogle Scholar
  45. 45.
    Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779CrossRefPubMedGoogle Scholar
  46. 46.
    Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37:715–719CrossRefPubMedGoogle Scholar
  47. 47.
    Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908CrossRefPubMedGoogle Scholar
  48. 48.
    Smits AM, van Vliet P, Metz CH, Korfage T, Sluijter JP, Doevendans PA, Goumans MJ (2009) Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 4:232–243CrossRefPubMedGoogle Scholar
  49. 49.
    Sperr WR, Bankl HC, Mundigler G, Klappacher G, Grossschmidt K, Agis H, Simon P, Laufer P, Imhof M, Radaszkiewicz T, Glogar D, Lechner K, Valent P (1994) The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood 84:3876–3884PubMedGoogle Scholar
  50. 50.
    Stellos K, Langer H, Daub K, Schoenberger T, Gauss A, Geisler T, Bigalke B, Mueller I, Schumm M, Schaefer I, Seizer P, Kraemer BF, Siegel-Axel D, May AE, Lindemann S, Gawaz M (2008) Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 117:206–215CrossRefPubMedGoogle Scholar
  51. 51.
    Takamiya M, Okigaki M, Jin D, Takai S, Nozawa Y, Adachi Y, Urao N, Tateishi K, Nomura T, Zen K, Ashihara E, Miyazaki M, Tatsumi T, Takahashi T, Matsubara H (2006) Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/FLK-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol 26:751–757CrossRefPubMedGoogle Scholar
  52. 52.
    Tateishi K, Ashihara E, Honsho S, Takehara N, Nomura T, Takahashi T, Ueyama T, Yamagishi M, Yaku H, Matsubara H, Oh H (2007) Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 352:635–641CrossRefPubMedGoogle Scholar
  53. 53.
    Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B (2007) Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 27:1572–1579CrossRefPubMedGoogle Scholar
  54. 54.
    van Vliet P, Roccio M, Smits AM, van Oorschot AA, Metz CH, van Veen TA, Sluijter JP, Doevendans PA, Goumans MJ (2008) Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J 16:163–169PubMedGoogle Scholar
  55. 55.
    Werner N, Wassmann S, Ahlers P, Schiegl T, Kosiol S, Link A, Walenta K, Nickenig G (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571CrossRefPubMedGoogle Scholar
  56. 56.
    Xiao Q, Kiechl S, Patel S, Oberhollenzer F, Weger S, Mayr A, Metzler B, Reindl M, Hu Y, Willeit J, Xu Q (2007) Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis—results from a large population-based study. PLoS One 2:e975CrossRefPubMedGoogle Scholar
  57. 57.
    Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328CrossRefPubMedGoogle Scholar
  58. 58.
    Yang C, Zhang ZH, Li ZJ, Yang RC, Qian GQ, Han ZC (2004) Enhancement of neovascularization with cord blood CD133+ cell-derived endothelial progenitor cell transplantation. Thromb Haemost 91:1202–1212PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Joakim Sandstedt
    • 1
  • Marianne Jonsson
    • 1
  • Anders Lindahl
    • 1
  • Anders Jeppsson
    • 2
  • Julia Asp
    • 1
  1. 1.Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska AcademyGothenburg UniversityGöteborgSweden
  2. 2.Department of Cardiothoracic SurgerySahlgrenska University HospitalGöteborgSweden

Personalised recommendations