Skip to main content

Advertisement

Log in

Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The ability of human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to transdifferentiate towards cardiomyocytes remains unclear. The aim of this study was to direct UCBMSCs to the cardiac lineage by exposure to: (1) 5-azacytidine (AZ) or dimethyl sulfoxide (DMSO); (2) a combination of growth factors involved in early cardiomyogenesis (BMP-2 + bFGF + IGF-1); (3) the Wnt signaling activators lithium chloride (LiCl) and phorbol-12-myristate-13-acetate (PMA); and (4) direct contact with neonatal rat cardiomyocytes. Expression of cardiomyocyte-specific proteins and β-catenin were assessed by quantitative RT-PCR, immunofluorescence and Western blot. Cocultures of human UCBMSCs with neonatal rat cardiomyocytes were also analyzed for the presence of calcium oscillations and changes in electrical potential using Fura Red and di-4-ANEPPS confocal imaging, respectively. Induction of cardiac-specific proteins was not detected in 5-AZ- or DMSO-treated cells. Following DMSO addition, β-catenin cytoplasmic expression increased, but did not translocate into cell nuclei to promote cardiac gene activation. Likewise, neither co-stimulation with BMP-2 + bFGF + IGF-1, nor exposure to LiCl and PMA resulted in the acquisition of a cardiac phenotype by UCBMSCs. Direct contact with neonatal rat cardiomyocytes promoted neither the expression of cardiomyocyte-specific proteins, nor the presence of calcium rhythmic oscillations and potential-dependent fluorescence emission in UCBMSCs. The cardiomyogenic stimuli investigated in this study failed to transdifferentiate human UCBMSCs. Alternative strategies or regulatory factors and signaling pathways may be better suited to recruit UCBMSCs into cardiac cell lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdel-Latif A, Zuba-Surma EK, Case J, Tiwari S, Hunt G, Ranjan S, Vincent RJ, Srour EF, Bolli R, Dawn B (2008) TGF-beta1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells. Basic Res Cardiol 103:514–524

    Article  CAS  PubMed  Google Scholar 

  2. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032

    Article  PubMed  Google Scholar 

  3. Bartunek J, Croissant JD, Wijns W, Gofflot S, de Lavareille A, Vanderheyden M, Kaluzhny Y, Mazouz N, Willemsen P, Penicka M, Mathieu M, Homsy C, de Bruyne B, McEntee K, Lee IW, Heyndrickx GR (2007) Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am J Physiol Heart Circ Physiol 292:H1095–H1104

    Article  CAS  PubMed  Google Scholar 

  4. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682

    Article  CAS  PubMed  Google Scholar 

  5. Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209

    Article  CAS  PubMed  Google Scholar 

  6. Beltrami AP, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  7. Chan J, O’Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE, Fisk NM (2005) Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23:93–102

    Article  CAS  PubMed  Google Scholar 

  8. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  9. Dégano IR, Vilalta M, Bagó JR, Matthies AM, Hubbell JA, Dimitriou H, Bianco P, Rubio N, Blanco J (2008) Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells. Biomaterials 29:427–437

    Article  PubMed  Google Scholar 

  10. Eisenberg LM, Eisenberg CA (2006) Wnt signal transduction and the formation of the myocardium. Dev Biol 293:305–315

    Article  CAS  PubMed  Google Scholar 

  11. Farré J, Roura S, Prat-Vidal C, Soler-Botija S, Llach A, Molina CE, Hove-Madsen L, Cairó JJ, Gòdia F, Bragós R, Cinca J, Bayes-Genis A (2007) FGF-4 increases in vitro expansion rate of human adult bone marrow-derived mesenchymal stem cells. Growth Factors 25:71–76

    Article  PubMed  Google Scholar 

  12. Fishman MC, Chien KR (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124:2099–2117

    CAS  PubMed  Google Scholar 

  13. Foley A, Mercola M (2004) Heart induction: embryology to cardiomyocyte regeneration. Trends Cardiovasc Med 14:121–125

    Article  CAS  PubMed  Google Scholar 

  14. Franco D, Campione M (2003) The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 13:157–163

    Article  CAS  PubMed  Google Scholar 

  15. Fukuda K (2002) Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes. C R Biol 325:1027–1038

    Article  CAS  PubMed  Google Scholar 

  16. Gruh I, Beilner J, Blomer U, Schmiedl A, Schmidt-Richter I, Kruse ML, Haverich A, Martin U (2006) No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 113:1326–1334

    Article  CAS  PubMed  Google Scholar 

  17. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103:525–536

    Article  PubMed  Google Scholar 

  18. Henderson BR (2000) Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2:653–660

    Article  CAS  PubMed  Google Scholar 

  19. Hill AJ, Zwart I, Tam HH, Chan J, Navarrete C, Jen LS, Navarrete R (2009) Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cells types or integrate into the retina after intravitreal grafting in neonatal rats. Stem Cells Dev 18:399–409

    Article  CAS  PubMed  Google Scholar 

  20. Ito K, Okamoto I, Araki N, Kawano Y, Nakao M, Fujiyama S, Tomita K, Mimori T, Saya H (1999) Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of beta-catenin from cell-cell contacts. Oncogene 18:7080–7090

    Article  CAS  PubMed  Google Scholar 

  21. Knisley SB, Justice RK, Kong W, Johnson PL (2000) Ratiometry of transmembrane voltage-sensitive fluorescent dye emission in hearts. Am J Physiol Heart Circ Physiol 279:H1421–H1433

    CAS  PubMed  Google Scholar 

  22. Kogler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Müller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  PubMed  Google Scholar 

  23. Koyanagi M, Haendeler J, Badorff C, Brandes RP, Hoffmann J, Pandur P, Zeiher AM, Kühl M, Dimmeler S (2005) Non-canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells. J Biol Chem 280:16838–16842

    Article  CAS  PubMed  Google Scholar 

  24. Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, Wang G (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 103:265–273

    Article  CAS  PubMed  Google Scholar 

  25. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR (2005) Postnatal isl1 + cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  CAS  PubMed  Google Scholar 

  26. Lewitt MS, Brismar K, Ohlson J, Hartman J (2001) Lithium chloride inhibits the expression and secretion of insulin-like growth factor-binding protein-1. J Endocrinol 171:R11–R15

    Article  CAS  PubMed  Google Scholar 

  27. Lin L, Cui L, Zhou W, Dufort D, Zhang X, Cai CL, Bu L, Yang L, Martin J, Kemler R, Rosenfeld MG, Chen J, Evans SM (2007) Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci USA 104:9313–9318

    Article  CAS  PubMed  Google Scholar 

  28. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114

    Article  PubMed  Google Scholar 

  29. Malakooti J, Sandoval R, Memark VC, Dudeja PK, Ramaswamy K (2005) Zinc finger transcription factor Egr-1 is involved in stimulation of NHE2 gene expression by phorbol 12-myristate 13-acetate. Am J Physiol Gastrointest Liver Physiol 289:G653–G663

    CAS  PubMed  Google Scholar 

  30. Manca MF, Zwart I, Beo J, Palasingham R, Jen LS, Navarrete R, Girdlestone J, Navarrete CV (2008) Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood. Cytotherapy 10:54–68

    Article  CAS  PubMed  Google Scholar 

  31. Mazo M, Pelacho B, Léobon B, Gavira JJ, Peñuelas I, Cemborain A, Pénicaud L, Laharrague P, Joffre C, Boisson M, Ecay M, Collantes M, Barba J, Casteilla L, Prósper F (2008) Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail 10:454–462

    Article  PubMed  Google Scholar 

  32. McBurney MW, Jones-Villeneuve EM, Edwards MK, Anderson PJ (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299:165–167

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura T, Sano M, Songyang Z, Schneider MD (2003) A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci USA 100:5834–5839

    Article  CAS  PubMed  Google Scholar 

  34. Nishiyama N, Miyoshi S, Hida N, Uyama T, Okamoto K, Ikegami Y, Miyado K, Segawa K, Terai M, Sakamoto M, Ogawa S, Umezawa A (2007) The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells 25:2017–2024

    Article  CAS  PubMed  Google Scholar 

  35. Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  CAS  PubMed  Google Scholar 

  36. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  CAS  PubMed  Google Scholar 

  37. Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P (1991) Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68:856–869

    CAS  PubMed  Google Scholar 

  38. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349

    Article  CAS  PubMed  Google Scholar 

  39. Pal R, Khanna A (2006) Role of smad- and wnt-dependent pathways in embryonic cardiac development. Stem Cells Dev 15:29–39

    Article  CAS  PubMed  Google Scholar 

  40. Pandur P, Läsche M, Eisenberg LM, Kühl M (2002) Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418:636–641

    Article  CAS  PubMed  Google Scholar 

  41. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  42. Pittenger MF, Marti BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  CAS  PubMed  Google Scholar 

  43. Plageman TF, Katherin E, Yutzey KE (2005) T-Box genes and heart development: putting the “T” in heart. Dev Dyn 232:11–20

    Article  CAS  PubMed  Google Scholar 

  44. Playford MP, Bicknell D, Bodmer WF, Macaulay VM (2000) Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci USA 97:12103–12108

    Article  CAS  PubMed  Google Scholar 

  45. Prat-Vidal C, Roura S, Farré J, Gálvez C, Llach A, Molina CE, Hove-Madsen L, Garcia J, Cinca J, Bayes-Genis A (2007) Umbilical cord blood-derived stem cells spontaneously express cardiomyogenic traits. Transplant Proc 39:2434–2437

    Article  CAS  PubMed  Google Scholar 

  46. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  47. Roura S, Farré J, Soler-Botija C, Llach A, Hove-Madsen L, Cairó JJ, Gòdia F, Cinca J, Bayes-Genis A (2006) Effect of aging on the pluripotential capacity of human CD105+ mesenchymal stem cells. Eur J Heart Fail 8:555–563

    Article  CAS  PubMed  Google Scholar 

  48. Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315

    Article  CAS  PubMed  Google Scholar 

  49. Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11(4):451–462

    Article  CAS  PubMed  Google Scholar 

  50. Skerjanc IS, Petropoulos H, Ridgeway AG, Wilton S (1998) Myocyte enhancer factor 2C and Nkx2–5 up-regulate each other’s expression and initiate cardiomyogenesis in P19 cells. J Biol Chem 273:34904–34910

    Article  CAS  PubMed  Google Scholar 

  51. Sugi Y, Lough J (1995) Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 168:567–574

    Article  CAS  PubMed  Google Scholar 

  52. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  53. Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421

    Article  CAS  PubMed  Google Scholar 

  54. Xu C, Police S, Rao N, Carpenter MK (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508

    Article  CAS  PubMed  Google Scholar 

  55. Yang L, Cai CL, Lin L, Qyang Y, Chung C, Monteiro RM, Mummery CL, Fishman GI, Cogen A, Evans S (2006) Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133:1575–1585

    Article  CAS  PubMed  Google Scholar 

  56. Zwart I, Hill AJ, Girdlestone J, Manca MF, Navarrete R, Navarrete C, Jen LS (2008) Analysis of neural potential of human umbilical cord blood-derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli. J Neurosci Res 86:1902–1915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors specially thank Anna Llach and Montse Barriga for confocal imaging assistance. This work was supported by Ministerio de Educación y Ciencia (SAF 2004-08044-C03-01 and SAF2008-05144-C02-01) and Fundació Marató TV3 (2007, Malalties Cardiovasculars). We also appreciate support from Fundació Daniel Bravo Andreu and Fundació Roviralta. The authors thank the reviewers and editors for invaluable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Bayes-Genis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2009_81_MOESM1_ESM.tif

Supplementary Fig. 1 Coculture of human ATDPCs with neonatal rat cardiomyocytes: acquisition of cardiac-specific proteins. Representative merge images showing the intensity and disposition of sarcomeric α-actinin, β-MHC, Cx43, GATA-4, cTnI and Nkx2.5, which were comparable to those of the surrounding neonatal cardiomyocytes, in human GFP+ ADTPCs (green). The cytoplasmic disposition of cTnI within human GFP+ cells evoked the subcellular sarcomeric organization observed in neonatal cardiomyocytes in culture. N=40 microscopic fields per condition were analysed in two independent experiments. Scale bars: 20 μm (TIFF 3560 kb)

395_2009_81_MOESM2_ESM.tif

Supplementary Fig. 2 Coculture of human UCBMSCs with neonatal rat cardiomyocytes: distribution of Cx-43. Representative merge images from independent experiments (n=2), in which at least 20 microscopic fields were studied, showing the distribution of Cx-43 between human GFP+ UCBMSCs (green) and surrounding rat cardiomyocytes. Cx-43 displays an heterogeneous and sparse location in UCBMSC border compared to adjacent cardiomyocytes (white arrowheads). Inset in the right upper corner details distribution of Cx-43 in GFP+ UCBMSC-to-cardiomyocyte contacts. Scale bars: 20 μm (TIFF 3449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roura, S., Farré, J., Hove-Madsen, L. et al. Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells. Basic Res Cardiol 105, 419–430 (2010). https://doi.org/10.1007/s00395-009-0081-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0081-8

Keywords

Navigation