Advertisement

Basic Research in Cardiology

, Volume 105, Issue 2, pp 235–245 | Cite as

Endothelin-B receptors and ventricular arrhythmogenesis in the rat model of acute myocardial infarction

  • Dimitrios L. Oikonomidis
  • Dimitrios G. Tsalikakis
  • Giannis G. Baltogiannis
  • Alexandros T. Tzallas
  • Xanthi Xourgia
  • Maria G. Agelaki
  • Aikaterini J. Megalou
  • Andreas Fotopoulos
  • Apostolos Papalois
  • Zenon S. Kyriakides
  • Theofilos M. Kolettis
Original Contribution

Abstract

The arrhythmogenic effects of endothelin-1 (ET-1) are mediated via ETA-receptors, but the role of ETB-receptors is unclear. We examined the pathophysiologic role of ETB-receptors on ventricular tachyarrhythmias (VT/VF) during myocardial infarction (MI). MI was induced by coronary ligation in two animal groups, namely in wild-type (n = 63) and in ETB-receptor-deficient (n = 61) rats. Using a telemetry recorder, VT/VF episodes were evaluated during phase I (the 1st hour) and phase II (2–24 h) post-MI, with and without prior β-blockade. Action potential duration at 90% repolarization (APD90) was measured from monophasic epicardial recordings and indices of sympathetic activation were assessed using fast-Fourier analysis of heart rate variability. Serum epinephrine and norepinephrine were measured with radioimmunoassay. MI size was similar in the two groups. There was a marked temporal variation in VT/VF duration; during phase I, it was higher (p = 0.0087) in ETB-deficient (1,519 ± 421 s) than in wild-type (190 ± 34 s) rats, but tended (p = 0.086) to be lower in ETB-deficient (4.2 ± 2.0 s) than in wild-type (27.7 ± 8.0 s) rats during phase II. Overall, the severity of VT/VF was greater in ETB-deficient rats, evidenced by higher (p = 0.0058) mortality (72.0% vs. 32.1%). There was a temporal variation in heart rate and in the ratio of low- to high-frequency spectra, being higher (<0.001) during phase I, but lower (p < 0.05) during phase II in ETB-deficient rats. Likewise, 1 h post-MI, serum epinephrine (p = 0.025) and norepinephrine (p < 0.0001) were higher in ETB-deficient (4.20 ± 0.54, 14.24 ± 1.39 ng/ml) than in wild-type (2.30 ± 0.59, 5.26 ± 0.67 ng/ml) rats, respectively. After β-blockade, VT/VF episodes and mortality were similar in the two groups. The ETB-receptor decreases sympathetic activation and arrhythmogenesis during the early phase of MI, but these effects diminish during evolving MI.

Keywords

Endothelin B-receptors Myocardial infarction Ventricular arrhythmias 

Notes

Acknowledgments

Agapi Vilaeti, MD, and Eleftheria Karambela, RN, assisted during the experiments. Eleni Goga, MSc, offered invaluable help as a research coordinator. This work was supported by the Cardiovascular Research Institute, Ioannina and Athens, Greece.

References

  1. 1.
    Agelaki MG, Pantos C, Korantzopoulos P, Tsalikakis DG, Baltogiannis GG, Fotopoulos A, Kolettis TM (2007) Comparative antiarrhythmic efficacy of amiodarone and dronedarone during acute myocardial infarction in rats. Eur J Pharmacol 564:150–157CrossRefPubMedGoogle Scholar
  2. 2.
    Baltogiannis GG, Tsalikakis DG, Mitsi AC, Hatzistergos KE, Elaiopoulos D, Fotiadis DI, Kyriakides ZS, Kolettis TM (2005) Endothelin receptor-A blockade decreases ventricular arrhythmias after myocardial infarction in rats. Cardiovasc Res 67:647–654CrossRefPubMedGoogle Scholar
  3. 3.
    Brunner F, Doherty AM (1996) Role of ETB receptors in local clearance of endothelin-1 in rat heart: studies with the antagonists PD 155080 and BQ-788. FEBS Lett 396:238–242CrossRefPubMedGoogle Scholar
  4. 4.
    Campbell CA, Parratt JR (1983) The effect of beta-adrenoceptor blocking agents, with differing ancillary properties, on the arrhythmias resulting from acute coronary artery ligation in anaesthetized rats. Br J Pharmacol 79:939–946PubMedGoogle Scholar
  5. 5.
    Clements-Jewery H, Hearse DJ, Curtis MJ (2005) Phase 2 ventricular arrhythmias in acute myocardial infarction: a neglected target for therapeutic antiarrhythmic drug development and for safety pharmacology evaluation. Br J Pharmacol 145:551–564CrossRefPubMedGoogle Scholar
  6. 6.
    Crockett TR, Sharif I, Kane KA, Wainwright CL (2000) Sarafotoxin 6c protects against ischaemia-induced cardiac arrhythmias in vivo and in vitro in the rat. J Cardiovasc Pharmacol 36:S297–S299PubMedGoogle Scholar
  7. 7.
    Curtis MJ, Hearse DJ (1989) Ischemia-induced and reperfusion-induced arrhythmias differ in their sensitivity to potassium: implications for mechanisms of initiation and maintenance of ventricular fibrillation. J Mol Cell Cardiol 21:21–40CrossRefPubMedGoogle Scholar
  8. 8.
    Curtis MJ, Walker MJA (1988) Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischemia. Cardiovasc Res 22:656–665CrossRefPubMedGoogle Scholar
  9. 9.
    De Vreede-Swagemakers JJ, Gorgels AP, Duboisarbouw WI, Dalstra J, Daemen MJ, Van Ree JW, Stijns RE, Wellens HJJ (1998) Circumstances and causes of out-of-hospital cardiac arrest in sudden death survivors. Heart 79:356–361PubMedGoogle Scholar
  10. 10.
    Doggrell SA (2004) The endothelin system and its role in acute myocardial infarction. Expert Opin Ther Targets 8:191–201CrossRefPubMedGoogle Scholar
  11. 11.
    Elaiopoulos DA, Tsalikakis DG, Agelaki MG, Baltogiannis GG, Mitsi AC, Fotiadis DI, Kolettis TM (2007) Growth hormone decreases phase II ventricular tachyarrhythmias during acute myocardial infarction in rats. Clin Sci (Lond) 112:385–391CrossRefGoogle Scholar
  12. 12.
    Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G (1990) Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 70:963–985PubMedGoogle Scholar
  13. 13.
    Fliegel L (2001) Regulation of myocardial Na+/H+ exchanger activity. Basic Res Cardiol 96:301–305CrossRefPubMedGoogle Scholar
  14. 14.
    Gariepy CE, Williams SC, Richardson JA, Hammer RE, Yanagisawa M (1998) Transgenic expression of the endothelin-B receptor prevents congenital intestinal aganglionosis in a rat model of Hirschsprung disease. J Clin Invest 102:1092–1101CrossRefPubMedGoogle Scholar
  15. 15.
    Gariepy CE, Ohuchi T, Williams SC, Richardson JA, Yanagisawa M (2000) Salt-sensitive hypertension in endothelin-B receptor-deficient rats. J Clin Invest 105:925–933CrossRefPubMedGoogle Scholar
  16. 16.
    Horacek T, Neumann M, Mutius S, Budden M, Meesmann W (1984) Nonhomogeneous epicardial changes and the bimodal distribution of early ventricular arrhythmias during acute coronary artery occlusion. Basic Res Cardiol 79:649–667CrossRefPubMedGoogle Scholar
  17. 17.
    Isaka M, Kudo A, Imamura M, Kawakami H, Yasuda K (2007) Endothelin receptors, localized in sympathetic nerve terminals of the heart, modulate norepinephrine release and reperfusion arrhythmias. Basic Res Cardiol 102:154–162CrossRefPubMedGoogle Scholar
  18. 18.
    Kass RS, Wiegers SE (1982) The ionic basis of concentration related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres. J Physiol (Lond) 322:541–558Google Scholar
  19. 19.
    Kolettis TM, Baltogiannis GG, Tsalikakis DG, Tzallas AT, Agelaki MG, Fotopoulos A, Fotiadis DI, Kyriakides ZS (2008) Effects of dual endothelin receptor blockade on sympathetic activation and arrhythmogenesis during acute myocardial infarction in rats. Eur J Pharmacol 580:241–249CrossRefPubMedGoogle Scholar
  20. 20.
    Kolettis TM, Kyriakides ZS, Leftheriotis D, Papalambrou A, Kremastinos DT, Webb DJ (2003) Electrophysiologic effects of endothelin receptor-A blockade in patients with coronary artery disease. J Interv Card Electrophysiol 8:173–179CrossRefPubMedGoogle Scholar
  21. 21.
    Kruger C, Kalenka A, Haunstetter A, Schweizer M, Maier C, Ruhle U, Ehmke H, Kubler W, Haass M (1997) Baroreflex sensitivity and heart rate variability in conscious rats with myocardial infarction. Am J Physiol 273:H2240–H2247PubMedGoogle Scholar
  22. 22.
    Loennechen JP, Stoylen A, Beisvag V, Wisloff U, Ellingsen O (2001) Regional expression of endothelin-1, ANP, IGF-1, and LV wall stress in the infarcted rat heart. Am J Physiol Heart Circ Physiol 280:H2902–H2910PubMedGoogle Scholar
  23. 23.
    McCabe C, Hicks MN, Kane KA, Wainwright CL (2005) Electrophysiological and haemodynamic effects of endothelin ETA and ETB receptors in normal and ischaemic working rabbit hearts. Br J Pharmacol 146:118–128CrossRefPubMedGoogle Scholar
  24. 24.
    Merkely B, Geller L, Toth M, Kiss O, Kekesi V, Solti F, Vecsey T, Horkay F, Tenczer J, Juhasz-Nagy A (1998) Mechanism of endothelin-induced malignant ventricular arrhythmias in dogs. J Cardiovasc Pharmacol 31:S437–S439CrossRefPubMedGoogle Scholar
  25. 25.
    Miura T, Miki T (2008) Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol 103:501–513CrossRefPubMedGoogle Scholar
  26. 26.
    Molenaar P, O’Reilly G, Sharkey A, Kuc RE, Harding DP, Plumpton C, Gresham GA, Davenport AP (1993) Characterization and localization of endothelin receptor subtypes in the human atrioventricular conducting system and myocardium. Circ Res 72:526–538PubMedGoogle Scholar
  27. 27.
    Nagayama T, Kuwakubo F, Matsumoto T, Fukushima Y, Yoshida M, Suzuki-Kusaba M, Hisa H, Matsumura Y, Kimura T, Satoh S (2000) Role of endogenous endothelins in catecholamine secretion in the rat adrenal gland. Eur J Pharmacol 406:69–74CrossRefPubMedGoogle Scholar
  28. 28.
    Omland T, Lie RT, Aakvaag A, Aarsland T, Dickstein K (1994) Plasma endothelin determination as a prognostic indicator of 1-year mortality after acute myocardial infarction. Circulation 89:1573–1579PubMedGoogle Scholar
  29. 29.
    Opitz CF, Mitchell GF, Pfeffer MA, Pfeffer JM (1995) Arrhythmias and death after coronary artery occlusion in the rat. Continuous telemetric ECG monitoring in conscious, untethered rats. Circulation 92:253–261PubMedGoogle Scholar
  30. 30.
    Rosengren A, Wallentin L, Gitt K, Behar S, Battler A, Hasdai D (2004) Sex, age, and clinical presentation of acute coronary syndromes. Eur Heart J 25:663–670CrossRefPubMedGoogle Scholar
  31. 31.
    Schomig A, Haass M, Richardt G (1991) Catecholamine release and arrhythmias in acute myocardial ischaemia. Eur Heart J 12(Suppl F):38–47PubMedGoogle Scholar
  32. 32.
    Sharif I, Kane KA, Wainwright CL (1998) Endothelin and ischaemic arrhythmias-antiarrhythmic or arrhythmogenic? Cardiovasc Res 39:625–632CrossRefPubMedGoogle Scholar
  33. 33.
    Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DW et al (1988) The Lambeth conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res 22:447–455CrossRefPubMedGoogle Scholar
  34. 34.
    Wennmalm A, Karwatowska-Prokopczuk E, Wennmalm M (1989) Role of the coronary endothelium in the regulation of sympathetic transmitter release in isolated rabbit hearts. Acta Physiol Scand 136:81–87CrossRefPubMedGoogle Scholar
  35. 35.
    Yamaguchi N (1997) Role of ETA and ETB receptors in endothelin-1-induced adrenal catecholamine secretion in vivo. Am J Physiol 272:R1290–R1297PubMedGoogle Scholar
  36. 36.
    Yamamoto S, Matsumoto N, Kanazawa M, Fujita M, Takaoka M, Gariepy CE, Yanagisawa M, Matsumura Y (2005) Different contributions of endothelin-A and endothelin-B receptors in postischemic cardiac dysfunction and norepinephrine overflow in rat hearts. Circulation 111:302–309CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dimitrios L. Oikonomidis
    • 1
  • Dimitrios G. Tsalikakis
    • 2
  • Giannis G. Baltogiannis
    • 1
  • Alexandros T. Tzallas
    • 1
    • 3
  • Xanthi Xourgia
    • 4
  • Maria G. Agelaki
    • 1
  • Aikaterini J. Megalou
    • 1
  • Andreas Fotopoulos
    • 4
  • Apostolos Papalois
    • 5
    • 7
  • Zenon S. Kyriakides
    • 6
    • 7
  • Theofilos M. Kolettis
    • 1
    • 7
  1. 1.Department of CardiologyUniversity of IoanninaIoanninaGreece
  2. 2.Engineering Informatics and TelecommunicationsUniversity of Western MacedoniaKozaniGreece
  3. 3.Department of Computer SciencesUniversity of IoanninaIoanninaGreece
  4. 4.Department of Nuclear MedicineUniversity of IoanninaIoanninaGreece
  5. 5.ELPEN Research LaboratoryAthensGreece
  6. 6.Department of CardiologyAthens Red Cross HospitalAthensGreece
  7. 7.Cardiovascular Research InstituteIoanninaGreece

Personalised recommendations