Basic Research in Cardiology

, Volume 105, Issue 1, pp 9–18 | Cite as

Humoral anti-proteasomal autoimmunity in dilated cardiomyopathy

  • Antje Voigt
  • Katrin Bartel
  • Karl Egerer
  • Christiane Trimpert
  • Eugen Feist
  • Christine Gericke
  • Reinhard Kandolf
  • Karin Klingel
  • Ulrike Kuckelkorn
  • Karl Stangl
  • Stephan B. Felix
  • Gert Baumann
  • Peter-M. Kloetzel
  • Alexander Staudt
Original Contribution


Virus-induced chronic inflammation, autoimmune processes and impaired protein quality control may be involved in the pathogenesis of dilated cardiomyopathy (DCM). The ubiquitin–proteasome system is important in the modulation of inflammatory processes and the immune response. Proteasomes were identified as targets of a humoral autoimmune response in systemic inflammatory diseases, which provoked us to investigate anti-proteasomal immunity in DCM in detail: a total of 90 DCM patients with impaired left-ventricular function (LVEF ≤ 45%) were enrolled in this study. Autoimmune response to cardiac proteasomes was found to be enhanced in DCM patients, revealing the detection of predominantly α subunits of the 20S proteasome complex. Proteasome antibody (ProtAb) levels were found to be particularly enhanced at stages of advanced heart failure: moderately decreased LVEF and considerably increased NT-pro BNP levels were observed in DCM patients who tested positive for ProtAb (P < 0.05). A linear regression model suggested a link between the detection of cardiotropic viruses in endomyocardial biopsies and anti-proteasomal immunity (P < 0.01). Likewise, ProtAb levels were enhanced in a murine model of chronic enterovirus myocarditis. Our data also point to a potential interaction of ProtAb with the cell surface: ProtAb exerted negative inotropic effects in field-stimulated cardiomyocytes. In conclusion, humoral autoreactive anti-proteasome immune responses appear to be enhanced in DCM. Viral infection of the myocardium may be linked to the induction of anti-proteasomal immunity in DCM.


Viral heart disease Proteasome Cardiomyopathy Autoimmunity 



We thank the lab of Peter Jungblut (MPIIB) for performing 2D electrophoresis, and Katharina Janek for mass spectrometry. This study was supported by the Deutsche Forschungsgemeinschaft SFB/TR 19 TP B3 to A.V., U.K. and P.K., SFB/TR 19 TP C2 to A.S. and S.F, DFG FE 470/3-1.


  1. 1.
    Arribas J, Rodriguez ML, Forno RAD, Castano JG (1991) Autoantibodies against the multicatalytic proteinase in patients with systemic lupus-erythematosus. J Exp Med 173:423–427CrossRefPubMedGoogle Scholar
  2. 2.
    Avcin T, Canova M, Guilpain P, Guillevin L, Kallenberg CGM, Tincani A, Tonon M, Zampieri S, Doria A (2008) Infections, connective tissue diseases and vasculitis. Clin Exp Rheumatol 26:S18–S26PubMedGoogle Scholar
  3. 3.
    Brychcy M, Kuckelkorn U, Hausdorf G, Egerer K, Kloetzel PM, Burmester GR, Feist E (2006) Anti-20S proteasome autoantibodies inhibit proteasome stimulation by proteasome activator PA28. Arthritis Rheum 54:2175–2183CrossRefPubMedGoogle Scholar
  4. 4.
    Bureau JP, Olink-Coux M, Brouard N, Bayle-Julien S, Huesca M, Herzberg M, Scherrer K (1997) Characterization of prosomes in human lymphocyte subpopulations and their presence as surface antigens. Exp Cell Res 231:50–60CrossRefPubMedGoogle Scholar
  5. 5.
    Buvall L, Bollano E, Chen J, Shultze W, Fu M (2006) Phenotype of early cardiomyopathic changes induced by active immunization of rats with a synthetic peptide corresponding to the second extracellular loop of the human beta(1)-adrenergic receptor. Clin Exp Immunol 143:209–215CrossRefPubMedGoogle Scholar
  6. 6.
    Caforio AL, Tona F, Bottaro S, Vinci A, Dequal G, Daliento L, Thiene G, Iliceto S (2008) Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity 41:35–45CrossRefPubMedGoogle Scholar
  7. 7.
    Caforio ALP, Calabrese F, Angelini A, Tona F, Vinci A, Bottaro S, Ramondo A, Carturan E, Iliceto S, Thiene G, Daliento L (2007) A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 28:1326–1333CrossRefPubMedGoogle Scholar
  8. 8.
    Caforio ALP, Grazzini M, Mann JM, Keeling PJ, Bottazzo GF, McKenna WJ, Schiaffino S (1992) Identification of alpha-cardiac and beta-cardiac myosin heavy-chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation 85:1734–1742PubMedGoogle Scholar
  9. 9.
    Caforio ALP, Mahon NJ, McKenna WJ (2001) Cardiac autoantibodies to myosin and other heart-specific autoantigens in myocarditis and dilated cardiomyopathy. Autoimmunity 34:199–204PubMedCrossRefGoogle Scholar
  10. 10.
    de Groote P, Dagorn J, Soudan B, Lamblin N, McFadden E, Bauters C (2004) B-type natriuretic peptide and peak exercise oxygen consumption provide independent information for risk stratification in patients with stable congestive heart failure. J Am Coll Cardiol 43:1584–1589CrossRefPubMedGoogle Scholar
  11. 11.
    Feist E, Dorner T, Kuckelkorn U, Scheffler S, Burmester GR, Kloetzel PM (2000) Diagnostic importance of anti-proteasome antibodies. Int Arch Allergy Immunol 123:92–97CrossRefPubMedGoogle Scholar
  12. 12.
    Feist E, Dorner T, Kuckelkorn U, Schmidtke G, Micheel B, Hiepe F, Burmester GR, Kloetzel PM (1996) Proteasome alpha-type subunit C9 is a primary target of autoantibodies in sera of patients with myositis and systemic lupus erythematosus. J Exp Med 184:1313–1318CrossRefPubMedGoogle Scholar
  13. 13.
    Feist E, Kuckelkorn U, Dorner T, Donitz H, Scheffler S, Hiepe F, Kloetzel PM, Burmester GR (1999) Autoantibodies in primary Sjogren’s syndrome are directed against proteasomal subunits of the alpha and beta type. Arthritis Rheum 42:697–702CrossRefPubMedGoogle Scholar
  14. 14.
    Felix SB, Staudt A, Landsberger M, Grosse Y, Stangl V, Spielhagen T, Wallukat G, Wernecke KD, Baumann G, Stangl K (2002) Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J Am Coll Cardiol 39:646–652CrossRefPubMedGoogle Scholar
  15. 15.
    Gomes AV, Zong C, Edmondson RD, Li X, Stefani E, Zhang J, Jones RC, Thyparambil S, Wang GW, Qiao X, Bardag-Gorce F, Ping PP (2006) Mapping the murine cardiac 26S proteasome complexes. Circ Res 99:362–371CrossRefPubMedGoogle Scholar
  16. 16.
    Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067CrossRefPubMedGoogle Scholar
  17. 17.
    Harris JR (1968) Release of a macromolecular protein component from human erythrocyte ghosts. Biochim Biophys Acta 150:534–537CrossRefPubMedGoogle Scholar
  18. 18.
    Harris JR (1969) Isolation and purification of a macromolecular protein component from human erythrocyte ghost. Biochim Biophys Acta 188:31–42PubMedGoogle Scholar
  19. 19.
    Herrmann J, Soares SM, Lerman LO, Lerman A (2008) Potential role of the ubiquitin–proteasome system in atherosclerosis. J Am Coll Cardiol 51:2003–2010CrossRefPubMedGoogle Scholar
  20. 20.
    Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, Lohse MJ (2004) Direct evidence for a beta(1)-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429PubMedGoogle Scholar
  21. 21.
    Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F (1999) Autoantibodies activating human beta(1)-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99:649–654PubMedGoogle Scholar
  22. 22.
    Jäkel S, Kuchelkorn U, Szalay G, Plötz M, Textoris-Taube K, Opitz E, Klingel K, Stevanovic S, Kandolf R, Kotsch K, Stangl K, Kloetzel PM, Voigt A (2009) Differential interferon responses enhance viral epitope generation by myocardial immunoproteasomes in murine enterovirus myocarditis. Am J Pathol 175(2):510–518CrossRefPubMedGoogle Scholar
  23. 23.
    Jakob C, Egerer K, Liebisch P, Turkmen S, Zavrski I, Kuckelkorn U, Heider U, Kaiser M, Fleissner C, Sterz J, Kleeberg L, Feist E, Burmester GR, Kloetzel PM, Sezer O (2007) Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma. Blood 109:2100–2105CrossRefPubMedGoogle Scholar
  24. 24.
    Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Bohm M (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118:639–648CrossRefPubMedGoogle Scholar
  25. 25.
    Klingel K, Hohenadl C, Canu A, Albrecht M, Seemann M, Mall G, Kandolf R (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart-muscle infection—quantitative-analysis of virus-replication, tissue-damage, and inflammation. Proc Natl Acad Sci USA 89:314–318CrossRefPubMedGoogle Scholar
  26. 26.
    Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–187CrossRefPubMedGoogle Scholar
  27. 27.
    Kuhl U, Melzner B, Schafer B, Schultheiss HP, Strauer BE (1991) The Ca-channel as cardiac autoantigen. Eur Heart J 12:99–104PubMedGoogle Scholar
  28. 28.
    Kuhl U, Noutsias M, Seeberg B, Schultheiss HP (1996) Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 75:295–300CrossRefPubMedGoogle Scholar
  29. 29.
    Kuhl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 111:887–893CrossRefPubMedGoogle Scholar
  30. 30.
    Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HPP (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112:1965–1970CrossRefPubMedGoogle Scholar
  31. 31.
    Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590CrossRefPubMedGoogle Scholar
  32. 32.
    Matsui S, Larsson L, Hayase M, Katsuda S, Teraoka K, Kurihara T, Murano H, Nishikawa K, Fu M (2006) Specific removal of beta 1-adrenoceptor autoantibodies by immunoabsorption in rabbits with autoimmune cardiomyopathy improved cardiac structure and function. J Mol Cell Cardiol 41:78–85CrossRefPubMedGoogle Scholar
  33. 33.
    Noutsias M, Seeberg B, Schultheiss HP, Kuhl U (1999) Expression of cell adhesion molecules in dilated cardiomyopathy—evidence for endothelial activation in inflammatory cardiomyopathy. Circulation 99:2124–2131PubMedGoogle Scholar
  34. 34.
    Pankuweit S, Portig I, Lottspeich F, Maisch B (1997) Autoantibodies in sera of patients with myocarditis: characterization of the corresponding proteins by isoelectric focusing and N-terminal sequence analysis. J Mol Cell Cardiol 29:77–84CrossRefPubMedGoogle Scholar
  35. 35.
    Patterson C, Ike C, Willis PW, Stouffer GA, Willis MS (2007) The bitter end: the ubiquitin–proteasome system and cardiac dysfunction. Circulation 115:1456–1463CrossRefPubMedGoogle Scholar
  36. 36.
    Powell SR (2006) The ubiquitin–proteasome system in cardiac physiology and pathology. Am J Physiol Heart Circ Physiol 291:H1–H19CrossRefPubMedGoogle Scholar
  37. 37.
    Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P (1996) Report of the 1995 World Health Organization International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842PubMedGoogle Scholar
  38. 38.
    Rivett AJ, Palmer A, Knecht E (1992) Electron-microscopic localization of the multicatalytic proteinase complex in rat-liver and in cultured-cells. J Histochem Cytochem 40:1165–1172PubMedGoogle Scholar
  39. 39.
    Rose NR, Bona C (1993) Defining criteria for autoimmune-diseases (Witebsky postulates revisited). Immunol Today 14:426–429CrossRefPubMedGoogle Scholar
  40. 40.
    Schwimmbeck PL, Bigalke B, Schulze K, Pauschinger M, Kuhl U, Schultheiss HP (2004) The humoral immune response in viral heart disease: characterization and pathophysiological significance of antibodies. Med Microbiol Immunol 193:115–119CrossRefPubMedGoogle Scholar
  41. 41.
    Sixt SU, Dahlmann B (2008) Extracellular, circulating proteasomes and ubiquitin—incidence and relevance. Biochim Biophys Acta 1782:817–823PubMedGoogle Scholar
  42. 42.
    Staudt A, Eichler P, Trimpert C, Felix SB, Greinacher A (2007) Fc(gamma) receptors IIa on cardiomyocytes and their potential functional relevance in dilated cardiomyopathy. J Am Coll Cardiol 49:1684–1692CrossRefPubMedGoogle Scholar
  43. 43.
    Staudt A, Staudt Y, Dorr M, Bohm M, Knebel F, Hummel A, Wunderle L, Tiburcy M, Wernecke KD, Baumann G, Felix SB (2004) Potential role of humoral immunity in cardiac dysfunction of patients suffering from dilated cardiomyopathy. J Am Coll Cardiol 44:829–836CrossRefPubMedGoogle Scholar
  44. 44.
    Szalay G, Meiners S, Voigt A, Lauber J, Spieth C, Speer N, Sauter M, Kuckelkorn U, Zell A, Klingel K, Stangl K, Kandolf R (2006) Ongoing coxsackievirus myocarditis is associated with increased formation and activity of myocardial immunoproteasomes. Am J Pathol 168:1542–1552CrossRefPubMedGoogle Scholar
  45. 45.
    Szalay G, Sauter M, Hald J, Weinzierl A, Kandolf R, Klingel K (2006) Sustained nitric oxide synthesis contributes to immunopathology in ongoing myocarditis attributable to interleukin-10 disorders. Am J Pathol 169:2085–2093CrossRefPubMedGoogle Scholar
  46. 46.
    Tsutamoto T, Wada A, Maeda K, Hisanaga T, Maeda Y, Fukai D, Ohnishi M, Sugimoto Y, Kinoshita M (1997) Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure—prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 96:509–516PubMedGoogle Scholar
  47. 47.
    Weekes J, Morrison K, Mullen A, Wait R, Barton P, Dunn MJ (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3:208–216CrossRefPubMedGoogle Scholar
  48. 48.
    Wessely R, Klingel K, Santana LF, Dalton N, Hongo M, Lederer WJ, Kandolf R, Knowlton KU (1998) Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation–contraction coupling and dilated cardiomyopathy. J Clin Invest 102:1444–1453CrossRefPubMedGoogle Scholar
  49. 49.
    Young GW, Wang YJ, Ping PP (2008) Understanding proteasome assembly and regulation: importance to cardiovascular medicine. Trends Cardiovasc Med 18:93–98CrossRefPubMedGoogle Scholar
  50. 50.
    Zong C, Gomes AV, Drews O, Li XH, Young GW, Berhane B, Qiao X, French SW, Bardag-Gorce F, Ping PP (2006) Regulation of murine cardiac 20S proteasomes—role of associating partners. Cir Res 99:372–380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Antje Voigt
    • 1
  • Katrin Bartel
    • 1
  • Karl Egerer
    • 3
  • Christiane Trimpert
    • 2
  • Eugen Feist
    • 3
  • Christine Gericke
    • 5
  • Reinhard Kandolf
    • 6
  • Karin Klingel
    • 6
  • Ulrike Kuckelkorn
    • 4
  • Karl Stangl
    • 1
  • Stephan B. Felix
    • 2
  • Gert Baumann
    • 1
  • Peter-M. Kloetzel
    • 4
  • Alexander Staudt
    • 2
  1. 1.Medizinische Klinik für Kardiologie und AngiologieCharité-Universitätsmedizin Campus MitteBerlinGermany
  2. 2.Klinik für Innere Medizin BErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  3. 3.Medizinische Klinik für Rheumatologie und ImmunologieCharité-UniversitätsmedizinBerlinGermany
  4. 4.Institut für Biochemie CC2Charité-UniversitätsmedizinBerlinGermany
  5. 5.Institut für Medizinische BiometrieCharité-UniversitätsmedizinBerlinGermany
  6. 6.Molekulare PathologieUniversität TübingenTübingenGermany

Personalised recommendations