Advertisement

Basic Research in Cardiology

, Volume 104, Issue 2, pp 141–147 | Cite as

Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria

  • Kerstin Boengler
  • Sabine Stahlhofen
  • Anita van de Sand
  • Petra Gres
  • Marisol Ruiz-Meana
  • David Garcia-Dorado
  • Gerd Heusch
  • Rainer SchulzEmail author
Original Contribution

Abstract

Cardiomyocytes contain subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria, which differ in their respiratory and calcium retention capacity. Connexin 43 (Cx43) is located at the inner membrane of SSM, and Cx43 is involved in the cardioprotection by ischemic preconditioning (IP). The function of Cx43-formed channels is regulated in part by phosphorylation at residues in the carboxy terminus of Cx43. The aim of the present study was (1) to investigate whether Cx43 is also present in IFM, and (2) to characterize its spatial orientation in the inner mitochondrial membrane (IMM). Confirming previous findings, ADP-stimulated respiration was greater in IFM than in SSM from rat ventricles. In preparations from rats and mice not contaminated with sarcolemmal proteins, Cx43 was exclusively detected in SSM, but not in IFM by Western blot analysis (n = 6). SSM were exposed to different proteinase K concentrations to cleave peptide bonds, and Western blot analysis was performed for ATP synthase α (IMM, subunit in the matrix), uncoupling protein 3 (UCP3, IMM, intermembrane space epitope), and manganese superoxide dismutase (MnSOD, matrix). At a proteinase K concentration of 50 μg/ml, immunoreactivities of all the analyzed proteins were completely lost. The use of 5 μg/ml proteinase K resulted in similarly reduced immunoreactivities for Cx43 (19.4 ± 5.8% of untreated mitochondria, n = 6) and UCP3 (23.0 ± 4%, n = 7), whereas the immunoreactivities of ATP synthase α (49.1 ± 6.4%, n = 7) and MnSOD (79.9 ± 17.4%, n = 6) were better preserved, suggesting that the carboxy terminus of Cx43 is directed towards the intermembrane space. The results were confirmed in digitonin-treated mitochondria. Taken together, Cx43 is exclusively localized in SSM, with its carboxy terminus directed towards the intermembrane space. Since loss of mitochondrial Cx43 abolishes IP’s cardioprotection, SSM and IFM apparently differ in their function in the signal transduction of IP.

Keywords

Connexin 43 Mitochondria Ischemic preconditioning 

Notes

Acknowledgment

R.S. was the recipient of a grant from the Deutsche Forschungsgemeinschaft (Schu 843/7-1).

References

  1. 1.
    Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA (2005) Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol 289:C994–C1001PubMedCrossRefGoogle Scholar
  2. 2.
    Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074PubMedCrossRefGoogle Scholar
  3. 3.
    Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou N-H, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin 43: a possible target for the antiarrhythmic peptide analogue roitgaptide (ZP123). J Mol Cell Cardiol 40:790–798PubMedCrossRefGoogle Scholar
  4. 4.
    Baines CP, Zhang J, Wang G-W, Zheng Y-T, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCε and MAPK form signaling modules in the murine heart. Circ Res 90:390–397PubMedCrossRefGoogle Scholar
  5. 5.
    Boengler K, Dodoni G, Ruiz-Meana M, Cabestrero A, Rodriguez-Sinovas A, Garcia-Dorado D, Gres P, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244PubMedCrossRefGoogle Scholar
  6. 6.
    Bowling N, Huang X, Sandusky GE, Fouts RL, Mintze K, Esterman M, Allen PD, Maddi R, McCall E, Vlahos CJ (2001) Protein kinase C-α and -ε modulate connexin-43 phosphorylation in human heart. J Mol Cell Cardiol 33:789–798PubMedCrossRefGoogle Scholar
  7. 7.
    Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen MV, Yang XM, Downey JM (2008) Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 103:464–471PubMedCrossRefGoogle Scholar
  9. 9.
    Costa ADT, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytososl to mitochondria. Circ Res 97:329–336PubMedCrossRefGoogle Scholar
  10. 10.
    Doble BW, Ping P, Fandrich RR, Cattani PA, Kardami E (2001) Protein kinase C-epsilon mediates phorbol ester-induced phosphorylation of connexin-43. Cell Commun Adhes 8:253–256PubMedCrossRefGoogle Scholar
  11. 11.
    Doble BW, Ping P, Kardami E (2000) The ε subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301PubMedGoogle Scholar
  12. 12.
    Dost T, Cohen MV, Downey JM (2008) Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning. Basic Res Cardiol 103:378–384PubMedCrossRefGoogle Scholar
  13. 13.
    Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498–1505PubMedCrossRefGoogle Scholar
  14. 14.
    Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Agulló L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70:274–285PubMedCrossRefGoogle Scholar
  16. 16.
    Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditoining? Cardiovasc Res 55:534–543PubMedCrossRefGoogle Scholar
  17. 17.
    Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452PubMedCrossRefGoogle Scholar
  18. 18.
    Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586PubMedCrossRefGoogle Scholar
  19. 19.
    Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919PubMedCrossRefGoogle Scholar
  20. 20.
    Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356PubMedCrossRefGoogle Scholar
  21. 21.
    Jaburek M, Costa AD, Burton JR, Costa CL, Garlid KD (2006) Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res 99:878–883PubMedCrossRefGoogle Scholar
  22. 22.
    Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524PubMedCrossRefGoogle Scholar
  23. 23.
    Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. Faseb J 19:419–421PubMedGoogle Scholar
  24. 24.
    Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205–215PubMedCrossRefGoogle Scholar
  25. 25.
    Li X, Heinzel FR, Boengler K, Schulz R, Heusch G (2004) Role of connexin 43 in ischemic preconditioning does not involve intercellular communications through gap junctions. J Mol Cell Cardiol 36:161–163PubMedCrossRefGoogle Scholar
  26. 26.
    Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM (2008) Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 103:54–59PubMedCrossRefGoogle Scholar
  27. 27.
    Miro-Casas E, Ruiz-Meana M, Agullo E, Torre I, Cabestrero A, Rodriguez-Sinovas A, Morente M, Boengler K, Schulz R, Heusch G, Garcia-Dorado D (2007) Mitochondrial connexin 43 hemichannels. J Mol Cell Cardiol 42:S120CrossRefGoogle Scholar
  28. 28.
    Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67PubMedCrossRefGoogle Scholar
  29. 29.
    Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K-ATP channels during reperfusion. Basic Res Cardiol 103:472–484PubMedCrossRefGoogle Scholar
  30. 30.
    Padilla F, Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Soler-Soler J (2003) Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol 285:H1909–H1916PubMedGoogle Scholar
  31. 31.
    Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466PubMedGoogle Scholar
  32. 32.
    Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and inter-fibrillar mitochondria isolated from rat cardiac-muscle. J Biol Chem 252:8731–8739PubMedGoogle Scholar
  33. 33.
    Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart-mitochondria to calcium. Am J Physiol 250:H741–H748PubMedGoogle Scholar
  34. 34.
    Papa S, Sardanelli AM, Scacco S, Technikova-Dobrova Z (1999) cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. FEBS Lett 444:245–249PubMedCrossRefGoogle Scholar
  35. 35.
    Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:H868–H872PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miró E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101PubMedCrossRefGoogle Scholar
  37. 37.
    Ruiz-Meana M, Abellan A, Miro-Casas E, Garcia-Dorado D (2007) Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102:542–552PubMedCrossRefGoogle Scholar
  38. 38.
    Saez JC, Retamal MA, Basilio D, Bukausas FF, Bennettt MVL (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochem Biophys Acta 1711:215–224PubMedCrossRefGoogle Scholar
  39. 39.
    Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266PubMedCrossRefGoogle Scholar
  40. 40.
    Schulz R, Heusch G (2006) Connexin43 and ischemic preconditioning. Cardiovasc Gap Junctions 42:213–227CrossRefGoogle Scholar
  41. 41.
    Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin 43-deficient mice. Am J Physiol Heart Circ Physiol 283:H1740–H1742PubMedGoogle Scholar
  42. 42.
    Schwanke U, Li X, Schulz R, Heusch G (2003) No ischemic preconditioning in heterozygous connexin 43-deficient mice: a further in vivo study. Basic Res Cardiol 98:181–182PubMedGoogle Scholar
  43. 43.
    Shah MM, Martinez AM, Fletcher WH (2002) The connexin 43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies. Mol Cell Biochem 238:57–68PubMedCrossRefGoogle Scholar
  44. 44.
    Tanaka-Esposito C, Chen Q, Moghaddas S, Lesnefsky EJ (2007) Ischemic preconditioning does not protect via blockade of electron transport. J Appl Physiol 103:623–628PubMedCrossRefGoogle Scholar
  45. 45.
    Totzeck A, Boengler K, van de SA, Konietzka I, Gres P, Garcia-Dorado D, Heusch G, Schulz R (2008) No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol 295:H2106-H2112Google Scholar
  46. 46.
    Townsend PA, Davidson SM, Clarke SJ, Khaliulin I, Carroll CJ, Scarabelli TM, Knight RA, Stephanou A, Latchman DS, Halestrap AP (2007) Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress. Am J Physiol Heart Circ Physiol 293:H928–H938PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kerstin Boengler
    • 1
  • Sabine Stahlhofen
    • 1
  • Anita van de Sand
    • 1
  • Petra Gres
    • 1
  • Marisol Ruiz-Meana
    • 2
  • David Garcia-Dorado
    • 2
  • Gerd Heusch
    • 1
  • Rainer Schulz
    • 1
    Email author
  1. 1.Institut für Pathophysiologie, Zentrum für Innere MedizinUniversitätsklinikum EssenEssenGermany
  2. 2.Hospital Vall d’HebronBarcelonaSpain

Personalised recommendations