Advertisement

Basic Research in Cardiology

, Volume 104, Issue 1, pp 100–110 | Cite as

Green and black tea are equally potent stimuli of NO production and vasodilation: new insights into tea ingredients involved

  • Mario Lorenz
  • Janka Urban
  • Ulrich Engelhardt
  • Gert Baumann
  • Karl Stangl
  • Verena Stangl
ORIGINAL CONTRIBUTION

Abstract

Epidemiological studies suggest that consumption of tea is associated with beneficial cardiovascular effects. Since different types of tea are consumed throughout the world, a question of much interest is whether green tea is superior to black tea in terms of cardiovascular protection. We therefore compared the effects of green and black tea on nitric oxide (NO) production and vasodilation and elucidated the tea compounds involved. We chose a highly fermented black tea and determined concentrations of individual tea compounds in both green and black tea of the same type (Assam). The fermented black tea was almost devoid of catechins. However, both teas stimulated eNOS activity and phosphorylation in bovine aortic endothelial cells (BAEC) as well as vasorelaxation in rat aortic rings to a similar extent. In green tea, only epigallocatechin-3-gallate (EGCG) resulted in pronounced NO production and NO-dependent vasorelaxation in aortic rings. During tea processing to produce black tea, the catechins are converted to theaflavins and thearubigins. Individual black tea theaflavins showed a higher potency than EGCG in NO production and vasorelaxation. The thearubigins in black tea are highly efficient stimulators of vasodilation and NO production. Green and black tea compounds induced comparable phosphorylation of eNOS and upstream signalling kinases. Whereas stimulation of eNOS activity by EGCG was only slightly affected by pretreatment of cells with various ROS scavengers, TF3(theaflavin-3′,3-digallate)-induced eNOS activity was partially inhibited by PEG-catalase. These results implicate that highly fermented black tea is equally potent as green tea in promoting beneficial endothelial effects. Theaflavins and thearubigins predominantly counterbalance the lack of catechins in black tea. The findings may underline the contribution of black tea consumption in prevention of cardiovascular diseases.

Keywords

eNOS vasodilation EGCG catechin theaflavins thearubigin 

Notes

Acknowledgments

We are grateful to Angelika Vietzke, Thomas Düsterhöft, and Wanda Michaelis for their excellent technical assistance.

References

  1. 1.
    Anter E, Thomas SR, Schulz E, Shapira OM, Vita JA, Keaney JF Jr (2004) Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols. J Biol Chem 279:46637–46643PubMedCrossRefGoogle Scholar
  2. 2.
    Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704PubMedCrossRefGoogle Scholar
  3. 3.
    Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254SPubMedGoogle Scholar
  4. 4.
    Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5-AMP-activated protein kinase. J Biol Chem 282:30143–30149PubMedCrossRefGoogle Scholar
  5. 5.
    Determination of substances characteristic of green and black tea. (2005) Part 2: content of catechins in green tea. Method using high-performance liquid chromatography. International Standard ISO 14502-2:2005Google Scholar
  6. 6.
    Dreger H, Lorenz M, Kehrer A, Baumann G, Stangl K, Stangl V (2008) Characteristics of catechin- and theaflavin-mediated cardioprotection. Exp Biol Med 233:427–433CrossRefGoogle Scholar
  7. 7.
    Duffy SJ, Keaney JF Jr, Holbrook M, Gokce N, Swerdloff PL, Frei B, Vita JA (2001) Short- and long term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104:151–156PubMedGoogle Scholar
  8. 8.
    Geleijnse JM, Launer LJ, Hofman A, Pols HA, Witteman JC (1999) Tea flavonoids may protect against atherosclerosis: the Rotterdam Study. Arch Intern Med 159:2170–2174PubMedCrossRefGoogle Scholar
  9. 9.
    Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350PubMedCrossRefGoogle Scholar
  10. 10.
    Haslam E (2003) Thoughts on thearubigins. Phytochemistry 64:61–73PubMedCrossRefGoogle Scholar
  11. 11.
    Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011PubMedCrossRefGoogle Scholar
  12. 12.
    Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D (1997) Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 65:1489–1494PubMedGoogle Scholar
  13. 13.
    Hodgson JM, Puddey IB, Burke V, Watts GF, Beilin LJ (2002) Regular ingestion of black tea improves brachial artery vasodilator function. Clin Sci (Lond) 102:195–201CrossRefGoogle Scholar
  14. 14.
    Huang Y, Zhang A, Lau CW, Chen ZY (1998) Vasorelaxant effects of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci 63:275–283PubMedCrossRefGoogle Scholar
  15. 15.
    Jochmann N, Lorenz M, Krosigk AV, Martus P, Böhm V, Baumann G, Stangl K, Stangl V (2008) The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br J Nutr 99:863–868PubMedCrossRefGoogle Scholar
  16. 16.
    Kim JA, Formoso G, Li Y, Potenza MA, Marasciulo FL, Montagnani M, Quon MJ (2007) Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signalling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem 282:13736–13745PubMedCrossRefGoogle Scholar
  17. 17.
    Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki Study. JAMA 296:1255–1265PubMedCrossRefGoogle Scholar
  18. 18.
    Lakenbrink C, Lapczynski S, Maiwald B, Engelhardt UH (2000) Flavonoids and other polyphenols in consumer brews of tea and other caffeinated beverages. J Agric Food Chem 48:2848–2852PubMedCrossRefGoogle Scholar
  19. 19.
    Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY (2001) Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr 131:2248–2251PubMedGoogle Scholar
  20. 20.
    Liang YC, Chen YC, Lin YL, Lin-Shiau SY, Ho CT, Lin JK (1999) Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3′-digallate. Carcinogenesis 20:733–736PubMedCrossRefGoogle Scholar
  21. 21.
    Lorenz M, Jochmann N, von Krosigk A, Martus P, Baumann G, Stangl K, Stangl V (2007) Addition of milk prevents vascular protective effects of tea. Eur Heart J 28:219–223PubMedCrossRefGoogle Scholar
  22. 22.
    Lorenz M, Wessler S, Follmann E, Michaelis W, Dusterhoft T, Baumann G, Stangl K, Stangl V (2004) A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt dependent pathway and leads to endothelial-dependent vasorelaxation. J Biol Chem 279:6190–6195PubMedCrossRefGoogle Scholar
  23. 23.
    Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16:77–84PubMedCrossRefGoogle Scholar
  24. 24.
    McNeill JR, Jurgens TM (2006) A systematic review of mechanisms by which natural products of plant origin evoke vasodilatation. Can J Physiol Pharmacol 84:803–821PubMedCrossRefGoogle Scholar
  25. 25.
    Menet MC, Sang S, Yang CS, Ho CT, Rosen RT (2004) Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem 52:2455–2461PubMedCrossRefGoogle Scholar
  26. 26.
    Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C (1996) The antioxidant properties of theaflavins and their gallate esters—radical scavengers or metal chelators? FEBS Lett 392:40–44PubMedCrossRefGoogle Scholar
  27. 27.
    Mukamal KJ, Maclure M, Muller JE, Sherwood JB, Mittleman MA (2002) Tea consumption and mortality after acute myocardial infarction. Circulation 105:2476–2481PubMedCrossRefGoogle Scholar
  28. 28.
    Nakachi K, Matsuyama S, Miyake S, Suganuma M, Imai K (2000) Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors 13:49–54PubMedCrossRefGoogle Scholar
  29. 29.
    Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide 15:265–279.PubMedCrossRefGoogle Scholar
  30. 30.
    Peters U, Poole C, Arab L (2001) Does tea affect cardiovascular disease? A meta analysis. Am J Epidemiol 154:495–503PubMedCrossRefGoogle Scholar
  31. 31.
    Riemersma RA, Rice-Evans CA, Tyrrell RM, Clifford MN, Lean ME (2001) Tea flavonoids and cardiovascular health. Q J Med 94:277–282Google Scholar
  32. 32.
    Sano J, Inami S, Seimiya K, Ohba T, Sakai S, Takano T, Mizuno K (2004) Effects of green tea intake on the development of coronary artery disease. Circ J 68:665–670PubMedCrossRefGoogle Scholar
  33. 33.
    Sasazuki S, Kodama H, Yoshimasu K, Liu Y, Washio M, Tanaka K, Tokunaga S, Kono S, Arai H, Doi Y, Kawano T, Nakagaki O, Takada K, Koyanagi S, Hiyamuta K, Nii T, Shirai K, Ideishi M, Arakawa K, Mohri M, Takeshita A (2000) Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women. Ann Epidemiol 10:401–408PubMedCrossRefGoogle Scholar
  34. 34.
    Sato Y, Nakatsuka H, Watanabe T, Hisamichi S, Shimizu H, Fujisaku S, Ichinowatari Y, Ida Y, Suda S, Kato K, Ikeda M (1989) Possible contribution of green tea drinking habits to the prevention of stroke. Tohoku J Exp Med 157:337–343.PubMedCrossRefGoogle Scholar
  35. 35.
    Stangl V, Dreger H, Stangl K, Lorenz M (2007) Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 73:348–358PubMedCrossRefGoogle Scholar
  36. 36.
    Stensvold I, Tverdal A, Solvoll K, Foss OP (1992) Tea consumption: relationship to cholesterol, blood pressure, and coronary and total mortality. Prev Med 21:546–553PubMedCrossRefGoogle Scholar
  37. 37.
    Subramanian N, Venkatesh P, Ganguli S, Sinkar VP (1999) Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J Agric Food Chem 47:2571–2588PubMedCrossRefGoogle Scholar
  38. 38.
    Sumpio BE, Cordova AC, Berke-Schlessel DW, Qin F, Chen QH (2006) Green tea, the “Asian paradox,” and cardiovascular disease. J Am Coll Surg 202:813–825PubMedCrossRefGoogle Scholar
  39. 39.
    Tanner FC, van der Loo B, Shaw S, Greutert H, Bachschmid MM, Berrozpe M, Rozenberg I, Blau N, Siebenmann R, Schmidli J, Meyer P, Lüscher TF (2007) Inactivity of nitric oxide synthase gene in the atherosclerotic human carotid artery. Basic Res Cardiol 102:308–317PubMedCrossRefGoogle Scholar
  40. 40.
    Ullmann U, Haller J, Decourt JD, Girault J, Spitzer V, Weber P (2004) Plasma kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int J Vitam Nutr Res 74:269–278PubMedCrossRefGoogle Scholar
  41. 41.
    Vinson JA, Teufel K, Wu N (2004) Green and black teas inhibit atherosclerosis by lipid, antioxidant, and fibrinolytic mechanisms. J Agric Food Chem 52:3661–3665PubMedCrossRefGoogle Scholar
  42. 42.
    Widlansky ME, Hamburg NM, Anter E, Holbrook M, Kahn DF, Elliott JG, Keaney JF Jr, Vita JA (2007) Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J Am Coll Nutr 26:95–102PubMedGoogle Scholar
  43. 43.
    Woodward M, Tunstall-Pedoe H (1999) Coffee and tea consumption in the Scottish Heart Health Study follow up: conflicting relations with coronary risk factors, coronary disease, and all cause mortality. J Epidemiol Community Health 53:481–487PubMedCrossRefGoogle Scholar
  44. 44.
    Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP (1998) Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 7:351–354PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Mario Lorenz
    • 1
  • Janka Urban
    • 1
  • Ulrich Engelhardt
    • 2
  • Gert Baumann
    • 1
  • Karl Stangl
    • 1
  • Verena Stangl
    • 1
  1. 1.Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie CharitéUniversitätsmedizin Berlin, CCMBerlinGermany
  2. 2.Institut für LebensmittelchemieTechnische Universität Carolo-WilhelminaBraunschweigGermany

Personalised recommendations