Advertisement

Basic Research in Cardiology

, Volume 103, Issue 2, pp 131–143 | Cite as

18F-labelled cardiac PET tracers: selected probes for the molecular imaging of transporters, receptors and proteases

  • Klaus KopkaEmail author
  • Otmar Schober
  • Stefan Wagner
REVIEW

Abstract

Designated radiopharmaceuticals labelled with the prominent positron-emitter 18F can be defined as molecular imaging probes for the examination of cardiovascular diseases at the cellular and subcellular level. Such molecular imaging agents representing radioindicators or radiotracers offer the opportunity to non-invasively trace their path and fate in the living organism by the scintigraphic technique, positron emission tomography (PET). The glucose analogue [18F]FDG is a widespread PET tracer and one of the earliest examples of a PET molecular imaging probe feasible to in vivo visualise glucose utilisation by a metabolic trapping mechanism. This short review is focussed on selected established 18F-labelled PET tracers as well as 18F-labelled radioligands in development that show the potential of being probes for the in vivo molecular imaging of proteins relevant in cardiovascular diseases such as receptors (i.e. β-Adrenoceptors), transporters (i.e. NET and VMAT) and proteases (i.e. MMPs).

Key words

molecular imaging cardiovascular imaging PET 18F-labelled PET tracers β-Adrenoceptors NET VMAT MMPs 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Sonderforschungsbereich SFB 656 Molecular cardiovascular imaging—from mouse to man (MoBil), Münster, Germany, projects A2, A3 and A5.

Conflict of Interest none.

References

  1. 1.
    Amara SG (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73–79PubMedCrossRefGoogle Scholar
  2. 2.
    Anthonio RL, Brodde OE, van Veldhuisen DJ, Scholtens E, Crijns HJ, van Gilst WH (2000) β-Adrenoceptor density in chronic infarcted myocardium: a subtype specific decrease of β 1-adrenoceptor density. Int J Cardiol 72:137–141PubMedCrossRefGoogle Scholar
  3. 3.
    Arch JR, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE, Wilson C, Wilson S (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165PubMedCrossRefGoogle Scholar
  4. 4.
    Barker EL, Blakely RD (1995) The fourth generation of progress. In: Bloom FE, Kupfer DJ (Eds) Psychopharmacology. Raven Press, New York, pp 321–333Google Scholar
  5. 5.
    Böhm H-J, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. Chem Biol Chem 5:637–643Google Scholar
  6. 6.
    Borkakoti N (2000) Structural studies of matrix metalloproteinases. J Mol Med 78:261–268PubMedCrossRefGoogle Scholar
  7. 7.
    Borowsky B, Hoffmann BJ (1995) Neurotransmitter transporters: molecular biology, function, and regulation. Int Rev Neurobiol 38:139–198PubMedCrossRefGoogle Scholar
  8. 8.
    Breyholz HJ, Wagner S, Levkau B, Schober O, Schäfers M, Kopka K (2007) A 18F-radiolabelled analogue of CGS 27023A for assessment of matrixmetalloproteinase activity in vivo. Q J Nucl Med Mol Imaging 51:24–32PubMedGoogle Scholar
  9. 9.
    Brock CS, Meikle SR, Price P (1997) Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumors benefit oncology? Eur J Nucl Med 24:691–705PubMedGoogle Scholar
  10. 10.
    Brodde OE (1991) β 1- and β 2-Adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242PubMedGoogle Scholar
  11. 11.
    Brodde OE, Leineweber K (2004) Autonomic receptor systems in the failing and aging human heart: similarities and differences. Eur J Pharmacol 500:167–176PubMedCrossRefGoogle Scholar
  12. 12.
    Brodde OE, Zerkowski HR, Doetsch N, Motomura S, Khamssi M, Michel MC (1989) Myocardial β-adrenoceptor changes in heart failure: concomitant reduction in β 1- and β 2-adrenoceptor function related to the degree of heart failure in patients with mitral valve disease. J Am Coll Cardiol 14:323–331PubMedCrossRefGoogle Scholar
  13. 13.
    Brownstein MJ, Hoffman BJ (1994) Neurotransmitter transporters. Recent Prog Hormone Res 49:27–42Google Scholar
  14. 14.
    Carrio I (2001) Cardiac neurotransmission imaging. J Nucl Med 42:1062–1076PubMedGoogle Scholar
  15. 15.
    Castellano M, Böhm M (1997) The cardiac β-adrenoceptor-mediated signaling pathway and its alterations in hypertensive heart disease. Hypertension 29:715– 722PubMedGoogle Scholar
  16. 16.
    Coates G, Chirakal R, Fallen EL, Firnau G, Garnett ES, Kamath MV, Scheffel A, Nahmias C (1996) Regional distribution and kinetics of 6-[18F]fluoro dopamine as a measure of cardiac sympathetic activity in humans. Heart 75:29–34PubMedCrossRefGoogle Scholar
  17. 17.
    de Groot TJ, van Waarde A, Elsinga PH, Visser GM, Brodde OE, Vaalburg W (1993) Synthesis and evaluation of 1′-[18F]fluorometoprolol as a potential tracer for the visualization of β-adrenoceptors with PET. Nucl Med Biol 20:637–642PubMedCrossRefGoogle Scholar
  18. 18.
    de Jong RM, Blanksma PK, van Waarde A, van Veldhuisen DJ (2002) Measurement of myocardial β-adrenoceptor density in clinical studies: a role for positron emission tomography? Eur J Nucl Med Mol Imaging 29:88–97PubMedCrossRefGoogle Scholar
  19. 19.
    Ding YS, Fowler JS, Gatley SJ, Dewey SL, Wolf AP, Schlyer DJ (1991) Synthesis of high specific activity 6-[18F]fluorodopamine for positron emission tomography studies of sympathetic nervous tissue. J Med Chem 34:861–863PubMedCrossRefGoogle Scholar
  20. 20.
    Doze P, Elsinga PH, de Vries EF, van Waarde A, Vaalburg W (2000) Mutagenic activity of a fluorinated analog of the β-adrenoceptor ligand carazolol in the Ames test. Nucl Med Biol 27:315–319PubMedCrossRefGoogle Scholar
  21. 21.
    Doze P, Elsinga PH, Maas B, van Waarde A, Wegman T, Vaalburg W (2002) Synthesis and evaluation of radiolabeled antagonists for imaging of β-adrenoceptors in the brain with PET. Neurochem Int 40:145–155PubMedCrossRefGoogle Scholar
  22. 22.
    Doze P, van Waarde A, Tewson TJ, Vaalburg W, Elsinga PH (2002) Synthesis and evaluation of (S)-[18F]fluoro ethylcarazolol for in vivo β-adrenoceptor imaging in the brain. Neurochem Int 41:17–27PubMedCrossRefGoogle Scholar
  23. 23.
    Eckelman WC, Rohatagi S, Krohn KA, Vera DR (2005) Are there lessons to be learned from drug development that will accelerate the use of molecular imaging probes in the clinic. Nucl Med Biol 32:657–662PubMedCrossRefGoogle Scholar
  24. 24.
    Eldadah BA, Pacak K, Eisenhofer G, Holmes C, Kopin IJ, Goldstein DS (2004) Cardiac uptake-1 inhibition by high circulating norepinephrine levels in patients with pheochromocytoma. Hypertension 43:1227–1232PubMedCrossRefGoogle Scholar
  25. 25.
    Elsinga PH, Doze P, Maas A, van Waarde A, Wegman T, Vaalburg W (2001) Synthesis and evaluation of radiolabelled antagonists for β-adrenoceptor imaging in the brain with PET. J Labelled Comp Radiopharm 44:S262–S264Google Scholar
  26. 26.
    Elsinga PH, van Waarde A, Jaeggi KA, Schreiber G, Heldoorn M, Vaalburg W (1997) Synthesis and evaluation of (S)-4-(3-(2’-[11C]isopropylamino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)-[11C]CGP 12388) and (S)-4-(3-((1’[18F]-fluoroisopropyl)amino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)[18F]fluoro-CGP 12388) for visualization of β-adrenoceptors with positron emission tomography. J Med Chem 40:3829–3835PubMedCrossRefGoogle Scholar
  27. 27.
    Elsinga PH, van Waarde A, Vaalburg W (2004) Receptor imaging in the thorax with PET. Eur J Pharmacol 499:1–13PubMedCrossRefGoogle Scholar
  28. 28.
    Elsinga PH, Vos MG, van Waarde A, Braker AH, de Groot TJ, Anthonio RL, Weemaes AA, Brodde OE, Visser GM, Vaalburg W (1996) (S,S)- and (S,R)-1′-[18F]fluorocarazolol, ligands for the visualization of pulmonary β-adrenergic receptors with PET. Nucl Med Biol 23:159–167PubMedCrossRefGoogle Scholar
  29. 29.
    Fallen EL, Coates G, Nahmias C, Chirakal R, Beanlands R, Wahl L, Woodcock G, Thomson M, Kamath M (1999) Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J 137:863–869PubMedCrossRefGoogle Scholar
  30. 30.
    Fei X, Zheng QH, Hutchins GD, Liu X, Stone KL, Carlson KA, Mock BH, Winkle WL, Glick-Wilson BE, Miller KD, Fife RS, Sledge GW, Sun HB, Carr RE (2002) Synthesis of MMP inhibitor radiotracers [11C]methyl-CGS 27023A and its analogs, new potential PET breast cancer imaging agents. J Labelled Comp Radiopharm 45:449–470CrossRefGoogle Scholar
  31. 31.
    Folgueras AR, Pendas AM, Sanchez LM, Lóez-Otín C (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48:411–424PubMedCrossRefGoogle Scholar
  32. 32.
    Füchtner F, Steinbach J, Mäding P, Johannsen B (1996) Basic hydrolysis of 2[18F]-fluoro-1,3,4,6-tetra-O-acetyl-d-glucose in the preparation of 2-[18F]fluoro-2-deoxy-d-glucose. Appl Radiat Isot 47:61–66CrossRefGoogle Scholar
  33. 33.
    Furumoto S, Iwata R, Ido T (2002) Design und synthesis of fluorine-18 labeled matrix metalloproteinase inhibitors for cancer imaging. J Labelled Comp Radiopharm 45:975–986CrossRefGoogle Scholar
  34. 34.
    Furumoto S, Takashima K, Kubota K, Ido T, Iwata R, Fukuda H (2003). Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nucl Med Biol 30:119–125PubMedCrossRefGoogle Scholar
  35. 35.
    Gallagher BM, Fowler JS, Gutterson NI, McGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]-2-deoxy-2-fluoro-d-glucose. J Nucl Med 1154–1161Google Scholar
  36. 36.
    Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113PubMedCrossRefGoogle Scholar
  37. 37.
    Goldstein DS, Eisenhofer G, Dunn BB, Armando I, Lenders J, Grossman E, Holmes C, Kirk KL, Bacharach S, Adams R, Herscovitch P, Kopin IJ (1993) Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22:1961– 1971PubMedCrossRefGoogle Scholar
  38. 38.
    Goldstein DS, Holmes C, Cannon 3rd RO, Eisenhofer G, Kopin IJ (1997) Sympathetic cardioneuropathy in dysautonomias. N Engl J Med 336:696–702PubMedCrossRefGoogle Scholar
  39. 39.
    Goldstein DS, Holmes C, Li ST, Bruce S, Metman LV, Cannon RO (2000) Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 133:338PubMedGoogle Scholar
  40. 40.
    Goldstein DS, Holmes C, Stuhlmuller JE, Lenders JW, Kopin IJ (1997) 6-[18F]fluorodopamine positron emission tomographic scanning in the assessment of cardiac sympathoneural function - studies in normal humans. Clin Auton Res 7:17–29PubMedCrossRefGoogle Scholar
  41. 41.
    Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238PubMedGoogle Scholar
  42. 42.
    Kopka K, Breyholz HJ, Wagner S, Law MP, Riemann B, Schröer S, Trub M, Guilbert B, Levkau B, Schober O, Schäfers M (2004) Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo. Nucl Med Biol 31:257–267PubMedCrossRefGoogle Scholar
  43. 43.
    Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598PubMedCrossRefGoogle Scholar
  44. 44.
    Langer O, Halldin C (2002) PET and SPET tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 29:416–434PubMedCrossRefGoogle Scholar
  45. 45.
    Li ST, Holmes C, Kopin IJ, Goldstein DS (2003) Aging-related changes in cardiac sympathetic function in humans, assessed by 6-18F-fluorodopamine PET scanning. J Nucl Med 44:1599–1603PubMedGoogle Scholar
  46. 46.
    Li ST, Tack CJ, Fananapazir L, Goldstein DS (2000) Myocardial perfusion and sympathetic innervation in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 35:1867–1873PubMedCrossRefGoogle Scholar
  47. 47.
    Moak JP, Eldadah B, Holmes C, Pechnik S, Goldstein DS (2005) Partial cardiac sympathetic denervation after bilateral thoracic sympathectomy in humans. Heart Rhythm 2:602–609PubMedCrossRefGoogle Scholar
  48. 48.
    Parsons SM (2000) Transport mechanism in acetylcholine and monoamine storage. FASEB J 14:2423–2434PubMedCrossRefGoogle Scholar
  49. 49.
    Pike VW, Law MP, Osman S, Davenport RJ, Rimoldi O, Giardina D, Camici PG (2000) Selection, design and evaluation of new radioligands for PET studies of cardiac adrenoceptors. Pharm Acta Helv 74:191–200PubMedCrossRefGoogle Scholar
  50. 50.
    Posakony JJ, Tewson TJ (2001) [18F]-Labeled β 1-selective ligands for imaging the adrenergic receptors of the heart. J Labelled Comp Radiopharm 44:S416–S417Google Scholar
  51. 51.
    Riemann B, Schäfers M, Law MP, Wichter T, Schober O (2003) Radioligands for imaging myocardial α- and β-adrenoceptors. Nuklearmedizin 42:4–9PubMedGoogle Scholar
  52. 52.
    Sarsero D, Molenaar P, Kaumann AJ, Freestone NS (1999) Putative β 4-adrenoceptors in rat ventricle mediate increases in contractile force and cell Ca2+: comparison with atrial receptors and relationship to (−)-[3H]-CGP 12177 binding. Br J Pharmacol 128:1445–1460PubMedCrossRefGoogle Scholar
  53. 53.
    Schäfers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schäfers KP, Law MP, Schober O, Levkau B (2004) Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109:2554–2559PubMedCrossRefGoogle Scholar
  54. 54.
    Serganova I, Blasberg R (2005) Reporter gene imaging: potential impact on therapy. Nucl Med Biol 32:763–780PubMedCrossRefGoogle Scholar
  55. 55.
    Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57:170–178PubMedCrossRefGoogle Scholar
  56. 56.
    Southworth R, Darling JL, Medina RA, Flynn AA, Pedley RB, Garlick PB (2002) Dissociation of glucose tracer uptake and glucose transporter distribution in the regionally ischemic isolated rat heart: application of a new autoradiographic technique. Eur J Nucl Med Mol Imaging 29:1334–1341PubMedCrossRefGoogle Scholar
  57. 57.
    Tewson TJ, Stekhova S, Kinsey B, Chen L, Wiens L, Barber R (1999) Synthesis and biodistribution of R- and S-isomers of [18F]-fluoropropranolol, a lipophilic ligand for the β-adrenergic receptor. Nucl Med Biol 26:891–896PubMedCrossRefGoogle Scholar
  58. 58.
    Vaidyanathan G, Affleck DJ, Zalutsky MR (1994) (4-[18F]fluoro-3-iodobenzyl)guanidine, a potential MIBG analogue for positron emission tomography. J Med Chem 37:3655–3662PubMedCrossRefGoogle Scholar
  59. 59.
    Vaidyanathan G, Affleck DJ, Zalutsky MR (1995) Validation of 4-[18F]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 36:644PubMedGoogle Scholar
  60. 60.
    van Waarde A, Vaalburg W, Doze P, Bosker FJ, Elsinga PH (2004) PET imaging of β-adrenoceptors in human brain: a realistic goal or a mirage? Curr Pharm Des 10:1519–1536PubMedCrossRefGoogle Scholar
  61. 61.
    van Waarde A, Visser TJ, Elsinga PH, de Jong B, van der Mark TW, Kraan J, Ensing K, Pruim J, Willemsen AT, Brodde OE, Visser GM, Paans AM, Vaalburg W (1997) Imaging β-adrenoceptors in the human brain with (S)-1′-[18F]fluorocarazolol. J Nucl Med 38:934–939PubMedGoogle Scholar
  62. 62.
    Visser TJ, van Waarde A, van der Mark TW, Kraan J, Elsinga PH, Pruim J, Ensing K, Jansen T, Willemsen AT, Franssen EJ, Visser GM, Paans AM, Vaalburg W (1997) Characterization of pulmonary and myocardial β-adrenoceptors with (S)-1′-[fluorine-18]fluorocarazolol. J Nucl Med 38:169–174PubMedGoogle Scholar
  63. 63.
    Wagner S, Breyholz HJ, Faust A, Höltke C, Levkau B, Schober O, Schäfers M, Kopka K (2006) Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 13:2819–2838PubMedCrossRefGoogle Scholar
  64. 64.
    Wagner S, Law MP, Riemann B, Pike VW, Breyholz HJ, Höltke C, Faust A, Renner C, Schober O, Schäfers M, Kopka K (2006) Synthesis of an 18F-labelled high affinity β 1-adrenoceptor PET radioligand based on ICI 89,406. J Labelled Comp Radiopharm 49:177–195CrossRefGoogle Scholar
  65. 65.
    Warburg O, Posener K, Negelein E (1924) VIII. The metabolism of cancer cells. Biochem Z 152:129–169Google Scholar
  66. 66.
    Weihe E, Eiden LE (2000) Chemical neuroanatomy of the vesicular amine transporters. FASEB J 14:2435–2449PubMedCrossRefGoogle Scholar
  67. 67.
    Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333PubMedGoogle Scholar
  68. 68.
    Welch MJ, Redvanly CS (2003) Handbook of radiopharmaceuticals: radiochemistry and applications. Wiley, LondonGoogle Scholar
  69. 69.
    Yamada S, Ohkura T, Uchida S, Inabe K, Iwatani Y, Rimura R, Hoshino T, Kaburagi T (1996) A sustained increase in β-adrenoceptors during long-term therapy with metoprolol and bisoprolol in patients with heart failure from idiopathic dilated cardiomyopathy. Life Sci 58:1737–1744PubMedCrossRefGoogle Scholar
  70. 70.
    Zheng QH, Hutchins GD, Mock BH, Winkle WL (2001) MMP Inhibitor Radiotracer [11C]Methyl-CGS27023A: a new PET breast cancer imaging agent. J Labelled Comp Radiopharm 44:S104–S106Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Dept. of Nuclear MedicineUniversity Hospital MünsterMünsterGermany

Personalised recommendations