Basic Research in Cardiology

, 102:553 | Cite as

Direct protective effects of poly-unsaturated fatty acids, DHA and EPA, against activation of cardiac late sodium current

A mechanism for ischemia selectivity
  • C. Pignier
  • C. Revenaz
  • I. Rauly-Lestienne
  • D. Cussac
  • A. Delhon
  • J. Gardette
  • B. Le Grand


Polyunsaturated fatty acids (PUFAs) such as docosahexaenoic and eicosapentaenoic acids (DHA, EPA) exert ischemic anti-arrhythmic effects. However, their mechanism of action remains unknown. The present study was designed to investigate their potential effect on the regulation of the late sodium current as the basis for their ischemic anti-arrhythmic activity. Human isoforms of wild-type SCN5A and ΔKPQ-mutated cardiac sodium channels were stably transfected in HEK 293 cells and, the resulting currents were recorded using the patch clamp technique in whole cell configuration. In addition to their effect to inhibit peak INa, acute application of DHA and EPA blocked veratridine-induced late sodium current (late INa-Verat) in a concentration — dependent manner with IC50 values of 2.1 ± 0.5 μM and 5.2 ± 0.8 μM,for DHA and EPA, respectively.Channels availability was reduced, resulting in a significant leftward shift of the steadystate inactivation curve by ‒10.0 ± 2.1 mV and ‒8.5 ± 0.2 mV for DHA and EPA, respectively. Similar inhibitory effects of DHA and EPA were also observed on late INa-KPQ. In addition to their role as blocking agents of peak INa, DHA and EPA reduced human late INa. These results could explain the antiarrhythmic properties of DHA and EPA during ischemia or following ischemia-reperfusion.

Key words

Na+ channels fatty acids ischemia long QT syndrome persistent sodium current 


  1. 1.
    Antzelevitch C, Fish J (2001) Electrical heterogeneity within the ventricular wall. Basic Res Cardiol 96:517–527CrossRefPubMedGoogle Scholar
  2. 2.
    Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, DiDiego JM, Fish JM, Cordeiro JM, Thomas G (2004) Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110:904–910CrossRefPubMedGoogle Scholar
  3. 3.
    Balser JR (2001) The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol 33:599–613CrossRefPubMedGoogle Scholar
  4. 4.
    Bennett PB, Yazawa K, Makita N, George Al Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685CrossRefPubMedGoogle Scholar
  5. 5.
    Billman GE, Kang JX, Leaf A (1997) Prevention of ischemia-induced cardiac sudden death by n-3 polyunsaturated fatty acids in dogs. Lipids 32:1161–1168CrossRefPubMedGoogle Scholar
  6. 6.
    Brouwer IA, Zock PL, Camm JA, Bocker D, Hauer RNW, Wever EFD, Dullemeijer C, Ronden JE, Katan MB, Lubinski A, Buschler H, Schouten EG (2006) Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators. The Study on omega-3 fatty acids and ventricular arrhythmia (SOFA) randomized trials. JAMA 295:2613–2619CrossRefPubMedGoogle Scholar
  7. 7.
    Burr ML, Ashfield-Watt PA, Dunstan FD, Fehily AM, Breay P, Ashton T, Zotos PC, Haboubi NA, Elwood PC (2003) Lack of benefit of dietary advice to men with angina: results from a controlled trial. Eur J Clin Nutri 57:193–200CrossRefGoogle Scholar
  8. 8.
    Christensen JH, Riahi S, Schmidt EB, Molgaard H, Kirstein Pedersen A, Heath F, et al. (2005) n-3 Fatty acids and ventricular arrhythmias in patients with ischaemic heart disease and implantable cardioverter defibrillators. Europace 7:338–344CrossRefPubMedGoogle Scholar
  9. 9.
    Coraboeuf E, Deroubaix E, Coulombe A (1980) Acidosis-induced abnormal repolarization and repetitive activity in isolated dog Purkinje fibers. J Physiol (Lond) 76:97–106Google Scholar
  10. 10.
    Den Ruijter HM, Berecki G, Opthof T, Verkerk AO, Zock PL, Coronel R (2007) Pro- and antiarrhythmic properties of a diet rich in fish oil. Cardiovasc Res 73:316–325CrossRefPubMedGoogle Scholar
  11. 11.
    Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM, et al. (1996) Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res 78:916–924PubMedGoogle Scholar
  12. 12.
    Eigel BN, Hadley RW (1999) Contribution of the Na+ channel and Na+/H+ exchanger to the anoxic rise of [Na+] in ventricular myocytes. Am J Physiol Heart Circ Physiol 277:H1817–H1822Google Scholar
  13. 13.
    Fedida D, Orth PMR, Hesketh CJ, Ezrin AM (2006) The Role of late INa and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers. J Cardiovasc Electrophysiol 17:S71–S78CrossRefPubMedGoogle Scholar
  14. 14.
    Gellens M, George A, Chen L, Chahine M, Horn R, Bardin R, Kallen R (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci USA 89:554–558CrossRefPubMedGoogle Scholar
  15. 15.
    Haigney MC, Lakatta EG, Stern MD, Silverman HS (1994) Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90:391–399PubMedGoogle Scholar
  16. 16.
    Hammarstrom AK, Gage PW (2002) Hypoxia and persistent sodium current. Eur Biophys J 31:323–330CrossRefPubMedGoogle Scholar
  17. 17.
    Heusch G (1994) Ischemia-selectivity: a new concept of cardioprotection by calcium antagonists. Basic Res Cardiol 89:2–5CrossRefPubMedGoogle Scholar
  18. 18.
    Huang B, El Sherif T, Gidh-Jain M, Quin D, El sheriff N (2001) Alterations of sodium channel kinetics and gene expression in the postinfarction remodeled myocardium. J Cardiovasc Electrophysiol 12:218–225CrossRefPubMedGoogle Scholar
  19. 19.
    Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol (Lond) 497:337–341PubMedGoogle Scholar
  20. 20.
    Ju YK, Saint DA, Gage PW (1994) Inactivation- resistant channels underlying the persistent sodium current in rat ventricular myocytes. Proc Biol Sci 256:163–168CrossRefPubMedGoogle Scholar
  21. 21.
    Leaf A, Albert CM, Josephson M, Steinhaus D, Kluger J, Kang JX, Cox B, Zhang H, Schoenfeld D (2005) Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation 112:2762–2768CrossRefPubMedGoogle Scholar
  22. 22.
    Leaf A, Xiao YF, Kang JX, Billman GE (2005) Membrane effects of the n-3 fish oil fatty acids, which prevent fatal ventricular arrhythmias. J Membr Biol 206:129–139CrossRefPubMedGoogle Scholar
  23. 23.
    Leifert WR, McMurchie EJ, Saint DA (1999) Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids. J Physiol (Lond) 520:671–679CrossRefPubMedGoogle Scholar
  24. 24.
    Li RA, Tomaselli GF, Marban EM (2004) Sodium channels. In: Zipes DP, Jalife J (eds) Cardiac Electrophysiology: From Cell to Bedside. Philadelphia, PA, Saunders, pp 1–9Google Scholar
  25. 25.
    Liu Y-M, De Felice LJ, Mazzanti M (1992) Na channels that remain open throughout the cardiac action potential plateau. Biophys J 63:654–662CrossRefPubMedGoogle Scholar
  26. 26.
    Makielski JC, Farley AL (2006) Na+ current in human ventricle: Implications for sodium loading and homeostasis. J Cardiovasc Electrophysiol 17:S15–S20CrossRefPubMedGoogle Scholar
  27. 27.
    Maltsev VA, Sabbah HN, Higgins RS, Silverman N, Lesch M, Undrovinas AI (1998) Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation 98:2545–2552PubMedGoogle Scholar
  28. 28.
    Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R et al. GISSIPrevenzione Investigators (2002) Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation 105:1897–1903CrossRefPubMedGoogle Scholar
  29. 29.
    Raitt MH, Connor WE, Morris C,Kron J, Halperin B, Chugh SS, McClelland J, Cook J, MacMurdy K, Swenson R, Connor SL, Gerhard G, Kraemer DF, Oseran D, Marchant C, Calhoun D, Shnider R, McAnulty J (2005) Fish oil supplementation and risk of ventricular tachycardia and ventricular fibrillation in patients with implantable defibrillators.A rondomized controlled trial. JAMA 293:2884–2891CrossRefPubMedGoogle Scholar
  30. 30.
    Saint DA, Ju YK, Gage PW (1992) A persistent sodium current in rat ventricular myocytes. J Physiol 453:219–231PubMedGoogle Scholar
  31. 31.
    Saint DA (2006) The role of the persistent Na+ current during cardiac ischemia and hypoxia. J Cardiovasc Electrophysiol 17:S96–S103CrossRefPubMedGoogle Scholar
  32. 32.
    Sakmann BF, Spindler AJ, Bryant SM, Linz KW, Noble D (2000) Distribution of a persistent sodium current across the ventricular wall in guinea pigs. Circ Res 87:910–914PubMedGoogle Scholar
  33. 33.
    Song Y, Shryock JC, Wu L, Belardinelli L (2004) Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 44:192–199CrossRefPubMedGoogle Scholar
  34. 34.
    Sunami A, Sasano T, Matsunaga A, Fan Z, Swanobori T, Hiraoka M (1993) Properties of veratridine-modified single Na+ channels in guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 264:H454–H463Google Scholar
  35. 35.
    Tamareille S, Le Grand B, John GW, Feuvray D, Coulombe A (2002) Antiischemic compound KC 12291 prevents diastolic contracture in isolated atria by blockade of voltage-gated sodium channels. J Cardiovasc Pharmacol 40:346–355CrossRefPubMedGoogle Scholar
  36. 36.
    Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71:1231–1241PubMedGoogle Scholar
  37. 37.
    Undrovinas AI, Maltsev VA, Sabbath HN (1999) Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: Role of sustained inward current. Cell Mol Life Sci 55:494–505CrossRefPubMedGoogle Scholar
  38. 38.
    Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38:475–483CrossRefPubMedGoogle Scholar
  39. 39.
    Verdonck F (1995) How high does intracellular sodium rise during acute myocardial ischaemia? Cardiovasc Res 29:278PubMedGoogle Scholar
  40. 40.
    Verkerk AO, Van Ginneken ACG, Berecki G, Den Ruijter HM, Schumacher CA, Veldkamp MW, et al. (2006) Incorporated sarcolemmal fish oil fatty acids shorten pig ventricular action potentials. Cardiovasc Res 70:509–520CrossRefPubMedGoogle Scholar
  41. 41.
    Wang DW, Yazawa K, George AL Jr, Bennett PB (1996) Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci USA 93:13200–13205CrossRefPubMedGoogle Scholar
  42. 42.
    Wu L, Shryock JC, Song Y, Li Y, Antzelevitch C, Belardinelli L (2004) Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of Long QT syndrome. J Pharmacol Exp Ther 310:599–605CrossRefPubMedGoogle Scholar
  43. 43.
    Xiao YF, Ke Q, Wang SY, Auktor K, Yang Y, Wang GK, et al. (2001) Single point mutations affect fatty acid block of human myocardial sodium channel α- subunit Na+ channels. Proc Natl Acad Sci USA 98:3606–3611CrossRefPubMedGoogle Scholar
  44. 44.
    Xiao Y-F, Ma L, Wang S-Y, Josephson ME, Wang GK, Morgan JP, Leaf A (2006) Potent block of inactivation-deficient Na+ channels by n-3 polyunsaturated fatty acids. Am J Physiol Cell Physiol 290:C362–C370CrossRefPubMedGoogle Scholar
  45. 45.
    Xiao YF, Sigg DC, Leaf A (2005) The antiarrhythmic effect of n-3 polyunsaturated fatty acids: modulation of cardiac ion channels as a potential mechanism. J Memb Biol 206:141–154CrossRefGoogle Scholar
  46. 46.
    Xiao YF, Wright SN, Wang GK, Morgan JP, Leaf A (1998) Fatty acids suppress voltage-gated Na+ currents in HEK293t cells transfected with the α-subunit of the human cardiac Na+ channel. Proc Natl Acad Sci USA 95:2680–2685CrossRefPubMedGoogle Scholar
  47. 47.
    Xiao YF,Wright SN,Wang GK, Morgan JP, Leaf A (2000) Coexpression with β1- subunit modifies the kinetics and fatty acid block of hH1α Na+ channels. Am J Physiol Heart Circ Physiol 279:H35–H46PubMedGoogle Scholar

Copyright information

© Steinkopff-Verlag 2007

Authors and Affiliations

  • C. Pignier
    • 3
  • C. Revenaz
    • 3
  • I. Rauly-Lestienne
    • 1
  • D. Cussac
    • 1
  • A. Delhon
    • 3
  • J. Gardette
    • 2
  • B. Le Grand
    • 3
  1. 1.Centre de Recherche Pierre FabreDépt. de Biologie Cellulaire et MoléculaireCastresFrance
  2. 2.Institut de Développement Pierre FabreRamonvilleFrance
  3. 3.Centre de Recherche Pierre FabreDivision des Maladies Cardiovasculaires IICastres cedexFrance

Personalised recommendations