Basic Research in Cardiology

, Volume 102, Issue 5, pp 453–459 | Cite as

Postconditioning protects human atrial muscle through the activation of the RISK pathway

  • V. Sivaraman
  • N. R. Mudalgiri
  • C. Di Salvo
  • S. Kolvekar
  • M. Hayward
  • J. Yap
  • B. Keogh
  • D. J. Hausenloy
  • D. M Yellon


Ischemic postconditioning (IPost) has been demonstrated to reduce myocardial injury in patients undergoing primary coronary angioplasty for an acute myocardial infarction.Pre-clinical animal studies suggest that pro-survival protein kinases of the Reperfusion Injury Salvage Kinase (RISK) pathway such as Akt and Erk1/2 mediate the cardioprotective effect of IPost.Whether IPost can protect human myocardial tissue ex vivo and whether it recruits the RISK pathway in human myocardium are both not known. To investigate this, atrial appendages were harvested from patients undergoing cardiac surgery. From these samples atrial trabeculae were isolated and mounted on a superperfusion apparatus and subjected to 90 min of hypoxia followed by 120 min of reoxygenation at the end of which function expressed as a percentage of the recovery of baseline contractile function was determined.Atrial trabeculae were randomized to control, hypoxic preconditioning (HPre), hypoxic postconditioning comprising either four 30-s (HPost-30) or 60-s (HPost-60) episodes of alternating hypoxia and reoxygenation, and HPost in the presence or absence of UO126 (a MEK1/2 inhibitor) or LY294002 (a PI3K inhibitor).HPre and HPost-60 improved the recovery of baseline contractile function (45.4±3.2% with HPre and 45.2±2.2% with HPost-60 vs 26.7±2.1 % in control: N≥ 6/group: P<0.05), whereas HPost-30 failed to cardioprotect (28.3±3.4% with HPost-30 vs 26.7±2.1 % in control: N≥ 6/group: P>0.05). The cardioprotective effect of HPost-60 was abolished in the presence of either LY (28.1±2.5% with HPost-60+LY vs 45.2±2.2% with HPost-60: N≥ 6/group: P<0.05) or UO (32.7±1.8% with HPost-60+UO vs 45.2±2.2% with HPost-60:N=7/group: P<0.05). The kinase inhibitors alone had no effect on functional recovery (28.2±3.6% with LY and 30.1±4.8% with UO vs 26.7±2.1 % in control: N≥ 5/group: P>0.05). In conclusion, we demonstrate for the first time that postconditioning protects human myocardium ex vivo and that this effect is dependent on the activation of the RISK pathway.

Key words

ischemic postconditioning RISK pathway Akt Erk1/2 human myocardium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bopassa JC, Ferrera R, Gateau-Roesch O,Couture-Lepetit E,Ovize M (2006) PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 69:178–185PubMedCrossRefGoogle Scholar
  2. 2.
    Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719PubMedCrossRefGoogle Scholar
  3. 3.
    Carr CS, Grover GJ, Pugsley WB,Yellon DM (1997) Comparison of the protective effects of a highly selective ATPsensitive potassium channel opener and ischemic preconditioning in isolated human atrial muscle. Cardiovasc Drugs Ther 11:473–478PubMedCrossRefGoogle Scholar
  4. 4.
    Carr CS,Hill RJ,Masamune H,Kennedy SP, Knight DR, Tracey WR, Yellon DM (1997) Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia. Cardiovasc Res 36:52–59PubMedCrossRefGoogle Scholar
  5. 5.
    Carr CS, Yellon DM (1997) Ischaemic preconditioning may abolish the protection afforded by ATP-sensitive potassium channel openers in isolated human atrial muscle. Basic Res Cardiol 92:252–260PubMedCrossRefGoogle Scholar
  6. 6.
    Darling CE, Solari PB, Smith CS, Furman MI, Przyklenk K (2007) ‘Postconditioning’ the human heart: Multiple balloon inflations during primary angioplasty may confer cardioprotection. Basic Res Cardiol 102(3):274–278PubMedCrossRefGoogle Scholar
  7. 7.
    Darling CE, Jiang R,Maynard M,Whittaker P,Vinten-Johansen J, Przyklenk K (2005) ‘Postconditioning’ via stuttering reperfusion limits myocardial infarct size in rabbit hearts: Role of ERK 1/2. Am J Physiol Heart Circ Physiol 289(4):H1618–26PubMedCrossRefGoogle Scholar
  8. 8.
    Davidson SM, Hausenloy D, Duchen MR,Yellon DM (2005) Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 38:414–419PubMedCrossRefGoogle Scholar
  9. 9.
    Fujita M,Asanuma H,Hirata A,Wakeno M, Takahama H, Sasaki H, Kim J, Takashima S, Tsukamoto O, Minamino T, Shinozaki Y, Tomoike H, Hori M, Kitakaze M (2007) Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol Heart Circ Physiol 292:H2004–H2008PubMedCrossRefGoogle Scholar
  10. 10.
    Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: United at reperfusion.Pharmacol Therapeutics (in press)Google Scholar
  11. 11.
    Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75PubMedCrossRefGoogle Scholar
  12. 12.
    Hausenloy DJ, Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35:339–341PubMedCrossRefGoogle Scholar
  13. 13.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460PubMedCrossRefGoogle Scholar
  14. 14.
    Heusch G (2004) Postconditioning: old wine in a new bottle? J Am Coll Cardiol 44:1111–1112PubMedCrossRefGoogle Scholar
  15. 15.
    Heusch G,Buchert A,Feldhaus S,Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356PubMedCrossRefGoogle Scholar
  16. 16.
    Iliodromitis EK, Georgiadis M, Cohen MV,Downey JM, Bofilis E,Kremastinos DT (2006) Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol 101:502–507PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang X, Shi E,Nakajima Y, Sato S (2006) Postconditioning,a series of brief interruptions of early reperfusion, prevents neurologic injury after spinal cord ischemia. Ann Surg 244:148–153PubMedCrossRefGoogle Scholar
  18. 18.
    Juhaszova M,Zorov DB,Kim SH,Pepe S, Fu Q, Fishbein KW, Ziman BD,Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase- 3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549PubMedCrossRefGoogle Scholar
  19. 19.
    Kin H, Zatta AJ, Lofye MT,Amerson BS, Halkos ME,Kerendi F,Zhao ZQ,Guyton RA, Headrick JP, Vinten-Johansen J (2005) Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 67:124–133PubMedCrossRefGoogle Scholar
  20. 20.
    Laskey WK (2005) Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovasc Interv 65:361–367PubMedCrossRefGoogle Scholar
  21. 21.
    Ma X, Zhang X, Li C, Luo M (2006) Effect of postconditioning on coronary blood flow velocity and endothelial function and LV recovery after myocardial infarction. J Interv Cardiol 19:367–375PubMedCrossRefGoogle Scholar
  22. 22.
    Mudalagiri NR, Yellon DM (2006) Erythropoietin-mediated protection against hypoxia/reoxygenation injury in human muscle is via phosphatidylinositol- 3-kinase and P44/P42 kinase activation. Circulation 114(18), AbstractGoogle Scholar
  23. 23.
    Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM (2005) Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol 289:H237-H242PubMedCrossRefGoogle Scholar
  24. 24.
    Speechly-Dick ME, Grover GJ, Yellon DM (1995) Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. Circ Res 77:1030–1035PubMedGoogle Scholar
  25. 25.
    Staat P, Rioufol G, Piot C,Cottin Y,Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G,Andre-Fouet X,Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148PubMedCrossRefGoogle Scholar
  26. 26.
    Sun HY,Wang NP,Kerendi F,Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol 288:H1900–H1908PubMedCrossRefGoogle Scholar
  27. 27.
    Sun K, Liu ZS, Sun Q (2004) Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning. World J Gastroenterol 10:1934–1938PubMedGoogle Scholar
  28. 28.
    Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232PubMedCrossRefGoogle Scholar
  29. 29.
    Tsang A, Hausenloy DJ, Yellon DM (2005) Myocardial postconditioning: reperfusion injury revisited. Am J Physiol Heart Circ Physiol 289:H2–H7PubMedCrossRefGoogle Scholar
  30. 30.
    Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F (2005) Postconditioning A new link in nature’s armor against myocardial ischemiareperfusion injury. Basic Res Cardiol 100:295–310PubMedCrossRefGoogle Scholar
  31. 31.
    Walker DM, Walker JM, Pugsley WB, Pattison CW,Yellon DM (1995) Preconditioning in isolated superfused human muscle.J Mol Cell Cardiol 27:1349–1357CrossRefGoogle Scholar
  32. 32.
    Yang XC, Liu Y,Wang LF, Cui L, Ge YG, Wang HS, Li WM, Xu L, Ni ZH, Liu HS, Zhang L, Wang T, Jia HM, Vinten-Johansen J, Zhao ZQ (2006) Permanent reduction in myocardial infarct size by postconditioning in patients after primary coronary angioplasty. Circulation 114(18), II-812,AbstractGoogle Scholar
  33. 33.
    Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110PubMedCrossRefGoogle Scholar
  34. 34.
    Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26:1114–1121PubMedCrossRefGoogle Scholar
  35. 35.
    Zhao ZQ, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, Zatta AJ, Guyton RA, Vinten-Johansen, J (2006) Postconditioning attenuates cardiac muscle cell apoptosis via translocation of survival kinases and opening of KATP channels in mitochondria. Circulation 114(18), II-261,AbstractGoogle Scholar
  36. 36.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten- Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588PubMedGoogle Scholar
  37. 37.
    Zhao ZQ, Vinten-Johansen J (2006) Postconditioning: reduction of reperfusion- induced injury. Cardiovasc Res 70:200–211PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag 2007

Authors and Affiliations

  • V. Sivaraman
    • 1
  • N. R. Mudalgiri
    • 1
  • C. Di Salvo
    • 2
  • S. Kolvekar
    • 2
  • M. Hayward
    • 2
  • J. Yap
    • 2
  • B. Keogh
    • 2
  • D. J. Hausenloy
    • 1
  • D. M Yellon
    • 1
  1. 1.The Hatter Institute and Centre for CardiologyUniversity College London HospitalLondonUK
  2. 2.The Heart HospitalUniversity College London Hospitals NHS, TrustLondonUK

Personalised recommendations