Advertisement

Basic Research in Cardiology

, Volume 102, Issue 5, pp 445–452 | Cite as

Ischemic preconditioning targets the reperfusion phase

  • D. J. Hausenloy
  • A. M. Wynne
  • D. M Yellon
ORIGINAL CONTRIBUTION

Abstract

Emerging studies suggest that signaling during the myocardial reperfusion phase contributes to ischemic preconditioning (IPC). Whether the activation of PKC, the opening of the mKATP channel, redox signaling and transient acidosis specifically at the time of myocardial reperfusion are required to mediate IPC-induced protection is not known. Langendorff-perfused rat hearts were subjected to 35 min ischemia followed by 120 min reperfusion at the end of which infarct size was determined by tetrazolium staining. Control and IPC-treated hearts were randomized to receive for the first 15 min of reperfusion: (1) DMSO (0.02%) vehicle control; (2) chelerythrine (10 μmol/l), a PKC antagonist; (3) 5 hydroxydecanoate (5- HD,100 μmol/l), a mKATP channel blocker; (4) N-mercaptopropionylglycine (MPG,1 mmol/l), a reactive oxygen species scavenger; (5) NaHCO3 (pH 7.6), to counteract any acidosis. Interestingly, all four agents given at the time of myocardial reperfusion abolished the infarct reduction elicited by IPC (N > 6/group): (1) DMSO at reperfusion: 49.3 ± 3.6% in control versus 21.0 ± 3.6% with IPC:P < 0.05; (2) chelerythrine at reperfusion: 57.1 ± 2.5% in control versus 60.1 ± 3.3% with IPC:P = NS; (3) 5-HD at reperfusion: 53.4 ± 6.5 % in control versus 42.6 ± 4.4% with IPC:P = NS; (4) MPG at reperfusion: 55.3 ± 4.6% in control versus 43.9 ± 5.2% with IPC:P = NS; (5) NaHCO3 at reperfusion 53.4 ± 2.5% in control versus 59.0 ± 3.3% with IPC:P = NS. In conclusion, we report for the first time that PKC activation, mKATP channel opening, redox signaling and a low pH at the time of myocardial reperfusion are required to mediate the cardioprotection elicited by ischemic preconditioning.

Key words

ischemic preconditioning reperfusion mKATP channel PKC redox signaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrukhiv A,Costa AD,West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074PubMedCrossRefGoogle Scholar
  2. 2.
    Argaud L, Gateau-Roesch O, Chalabreysse L, Gomez L, Loufouat J, Thivolet- Bejui F, Robert D, Ovize M (2004) Preconditioning delays Ca2+-induced mitochondrial permeability transition. Cardiovasc Res 61:115–122PubMedCrossRefGoogle Scholar
  3. 3.
    Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111:194–197PubMedCrossRefGoogle Scholar
  4. 4.
    Bopassa JC, Ferrera R, Gateau-Roesch O,Couture-Lepetit E,Ovize M (2006) PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 69:178–185PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903PubMedCrossRefGoogle Scholar
  6. 6.
    Costa AD, Garlid KD,West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein Kinase G Transmits the Cardioprotective Signal From Cytosol to Mitochondria. Circ Res 97:329–336PubMedCrossRefGoogle Scholar
  7. 7.
    Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD (2006) The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem 281:20801–20808PubMedCrossRefGoogle Scholar
  8. 8.
    Crestanello JA,Lingle DM,Kamelgard J, Millili J, Whitman GJ (1996) Ischemic preconditioning decreases oxidative stress during reperfusion: a chemiluminescence study. J Surg Res 65:53–58PubMedCrossRefGoogle Scholar
  9. 9.
    Darling CE, Jiang R,Maynard M,Whittaker P,Vinten-Johansen J, Przyklenk K (2005) 'Postconditioning' via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK 1/2. Am J Physiol Heart Circ Physiol 289:H1618–H1626PubMedCrossRefGoogle Scholar
  10. 10.
    Davidson SM, Hausenloy D, Duchen MR,Yellon DM (2006) Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 38:414–419PubMedCrossRefGoogle Scholar
  11. 11.
    Downey JM (1990) Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol 52:487–504PubMedCrossRefGoogle Scholar
  12. 12.
    Downey JM, Cohen MV (2005) We think we see a pattern emerging here. Circulation 111:120–121PubMedCrossRefGoogle Scholar
  13. 13.
    Downey JM, Cohen MV (2006) A really radical observation–a comment on Penna et al. in Basic Res Cardiol 101:180–189. Basic Res Cardiol 101:190–191CrossRefGoogle Scholar
  14. 14.
    Fujita M,Asanuma H,Hirata A,Wakeno M, Takahama H, Sasaki H, Kim J, Takashima S, Tsukamoto O, Minamino T, Shinozaki Y, Tomoike H, Hori M, Kitakaze M (2007) Prolonged Transient Acidosis During Early Reperfusion Contributes to the Cardioprotective Effects of Postconditioning. Am J Physiol Heart Circ Physiol 292:H2004–H2008PubMedCrossRefGoogle Scholar
  15. 15.
    Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082PubMedGoogle Scholar
  16. 16.
    Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98PubMedGoogle Scholar
  17. 17.
    Hausenloy DJ,Yellon DM (2007) Reperfusion Injury Salvage Kinase Signaling: Taking a RISK for Cardioprotection. Heart Failure Reviews (in press)Google Scholar
  18. 18.
    Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: United at reperfusion.Pharmacol Therapeutics (in press)Google Scholar
  19. 19.
    Hausenloy DJ,Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543PubMedCrossRefGoogle Scholar
  20. 20.
    Hausenloy DJ, Tsang A,Mocanu M,Yellon DM (2005) Ischemic preconditioning protects by activating pro-survival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976PubMedCrossRefGoogle Scholar
  21. 21.
    Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75PubMedCrossRefGoogle Scholar
  22. 22.
    Hausenloy DJ, Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35:339–341PubMedCrossRefGoogle Scholar
  23. 23.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460PubMedCrossRefGoogle Scholar
  24. 24.
    Hausenloy DJ,Yellon DM,Mani-Babu S, Duchen MR (2004) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 287:H841–H849PubMedCrossRefGoogle Scholar
  25. 25.
    Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R,Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Rers 16:583–586CrossRefGoogle Scholar
  26. 26.
    Heusch G (2004) Postconditioning: old wine in a new bottle? J Am Coll Cardiol 44:1111–1112PubMedCrossRefGoogle Scholar
  27. 27.
    Heusch G,Buchert A,Feldhaus S,Schulz R (2006) No loss of cardioprotection by postconditioning in connexin43-deficient mice. Basic Res Cardiol 101:354–356PubMedCrossRefGoogle Scholar
  28. 28.
    Jaburek M, Costa AD, Burton JR, Costa CL, Garlid KD (2006) Mitochondrial PKC{epsilon} and mitochondrial ATPsensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res 99:878–883PubMedCrossRefGoogle Scholar
  29. 29.
    Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524PubMedCrossRefGoogle Scholar
  30. 30.
    Juhaszova M,Zorov DB,Kim SH,Pepe S, Fu Q, Fishbein KW, Ziman BD,Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase- 3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549PubMedCrossRefGoogle Scholar
  31. 31.
    Kin H, Zatta AJ, Lofye MT,Amerson BS, Halkos ME,Kerendi F,Zhao ZQ,Guyton RA, Headrick JP, Vinten-Johansen J (2005) Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 67:124–133PubMedCrossRefGoogle Scholar
  32. 32.
    Kitakaze M, Funaya H, Minamino T, Node K, Sato H, Ueda Y, Okuyama Y, Kuzuya T, Hori M, Yoshida K (1997) Role of protein kinase C-alpha in activation of ecto-5’-nucleotidase in the preconditioned canine myocardium. Biochem Biophys Res Commun 239:171–175PubMedCrossRefGoogle Scholar
  33. 33.
    Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L,Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signalregulated kinase). Circulation 112:3911–3918PubMedCrossRefGoogle Scholar
  34. 34.
    Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, Trollinger DR, Herman B, Cascio WE (1996) The pH paradox in ischemiareperfusion injury to cardiac myocytes. EXS 76:99–114PubMedGoogle Scholar
  35. 35.
    Liu Y, Sato T, O’Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469PubMedGoogle Scholar
  36. 36.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136PubMedGoogle Scholar
  37. 37.
    Narayan P, Mentzer RM, Jr, Lasley RD (2001) Adenosine A1 receptor activation reduces reactive oxygen species and attenuates stunning in ventricular myocytes. J Mol Cell Cardiol 33:121–129PubMedCrossRefGoogle Scholar
  38. 38.
    Oldenburg O, Qin Q, Krieg T,Yang XM, Philipp S, Critz SD, Cohen MV,Downey JM (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 286:H468–H476PubMedCrossRefGoogle Scholar
  39. 39.
    Ozcan C, Bienengraeber M, Dzeja PP, Terzic A (2002). Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol 282:H531–H539PubMedGoogle Scholar
  40. 40.
    Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G,Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATPsensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189PubMedCrossRefGoogle Scholar
  41. 41.
    Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70:308–314PubMedCrossRefGoogle Scholar
  42. 42.
    Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357PubMedGoogle Scholar
  43. 43.
    Solenkova NV, Solodushko V, Cohen MV, Downey JM (2006) Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt. Am J Physiol Heart Circ Physiol 290:H441–H449PubMedCrossRefGoogle Scholar
  44. 44.
    Sun HY,Wang NP,Kerendi F,Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol 288:H1900–H1908PubMedCrossRefGoogle Scholar
  45. 45.
    Takano H,Tang XL,Qiu Y,Guo Y,French BA, Bolli R (1998) Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidantsensitive mechanism. Circ Res 83:73–84PubMedGoogle Scholar
  46. 46.
    Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232PubMedCrossRefGoogle Scholar
  47. 47.
    Xiao XH, Allen DG (1999) Role of Na(+)/H(+) exchanger during ischemia and preconditioning in the isolated rat heart. Circ Res 85:723–730PubMedGoogle Scholar
  48. 48.
    Xiao XH, Allen DG (2000) Activity of the Na(+)/H(+) exchanger is critical to reperfusion damage and preconditioning in the isolated rat heart. Cardiovasc Res 48:244–253PubMedCrossRefGoogle Scholar
  49. 49.
    Yang XM, Philipp S,Downey JM,Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3- kinase and guanylyl cyclase activation. Basic Res Cardiol 100:57–63PubMedCrossRefGoogle Scholar
  50. 50.
    Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110PubMedCrossRefGoogle Scholar
  51. 51.
    Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151PubMedGoogle Scholar
  52. 52.
    Zatta AJ,Kin H, Lee G,Wang N, Jiang R, Lust R,Reeves JG,Mykytenko J,Guyton RA, Zhao ZQ,Vinten-Johansen J (2006) Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res 70:315–324PubMedCrossRefGoogle Scholar
  53. 53.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten- Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2007

Authors and Affiliations

  1. 1.The Hatter Cardiovascular InstituteUniversity College London Hospital and Medical SchoolLondonUK

Personalised recommendations