Basic Research in Cardiology

, Volume 101, Issue 4, pp 281–291 | Cite as

LAMP-2 deficient mice show depressed cardiac contractile function without significant changes in calcium handling

  • Jörg Stypmann
  • Paul M.L. Janssen
  • Jürgen Prestle
  • Markus A. Engelen
  • Harald Kögler
  • Renate Lüllmann-Rauch
  • Lars Eckardt
  • Kurt von Figura
  • Jobst Landgrebe
  • Anna Mleczko
  • Paul Saftig
ORIGINAL CONTRIBUTION

Abstract

Objective

Mutations in the highly glycosylated lysosome associated membrane protein-2 (LAMP-2) cause, as recently shown, familial Danon disease with mental retardation, mild myopathy and fatal cardiomyopathy. Extent and basis of the contractile dysfunction is not completely understood.

Methods

In LAMP-2 deficient mice, we investigated cardiac function in vivo using Doppler-echocardiography and contractile function in vitro in isolated myocardial trabeculae.

Results

LAMP-2 deficient mice displayed reduced ejection fraction (EF) (58.9±3.4 vs. 80.7±5.1%, P<0.05) and reduced cardiac output (8.3±3.1 vs. 14.7±3.6 ml/min, P<0.05) as compared to wild-type controls. Isolated multicellular muscle preparations from LAMP-2 deficient mice confirmed depressed force development (3.2±0.6 vs. 8.4±0.9 mN/mm2, P<0.01). All groups showed similar force-frequency behaviour when normalised to baseline force. Post-rest potentiation was significantly depressed at intervals >15 s in LAMP-2 deficient mice (P<0.05). Although attenuated in absolute force development, the normalised inotropic response to increased calcium and β-adrenoreceptor stimulation was unaltered. Electron microscopic analysis revealed autophagic vacuoles in LAMP-2 deficient cardiomyocytes. Protein analysis showed unaltered levels of SERCA2a, calsequestrin and phospholamban.

Conclusions

Cardiac contractile function in LAMP-2 deficient mice as a model for Danon disease is significantly attenuated. The occurrence of autophagic vacuoles in LAMP-2 deficient myocytes is likely to be causal for the depressed contractile function resulting in an attenuated cardiac pump reserve.

Keywords

contractile function calcium mechanotransduction danon disease LAMP-2 

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG Sa 683/1-3) and the Fonds der Chemischen Industrie, the BMFT genomic network “Genetic susceptibility to heart failure and predictors of therapeutic response”, and the Interdisciplinary Centrum for Clinical Research (IZKF, ZPG 4a), University Hospital Münster, Germany. This work was partly supported by grants from the Deutsche Forschungsgemeinschaft (DFG), Sonderforschungsbereich 656 MoBil (project C3), Münster, Germany. We acknowledge technical assistance of Nicole Beikirch, Geerd Hensmann, Ellen Eckermann und Dagmar Niemeier.

References

  1. 1.
    Amos B, Lotan R (1990) Modulation of lysosomal-associated membrane glycoproteins during retinoic acid-induced embryonal carcinoma cell differentiation. J Biol Chem 265:19,192–19,198Google Scholar
  2. 2.
    Andrejewski N, Punnonen EL, Guhde G, Tanaka Y, Lullmann-Rauch R, Hartmann D, von Figura K, Saftig P (1999) Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem 274:12,692–12,701CrossRefGoogle Scholar
  3. 3.
    Arad M, Maron BJ, Gorham JM, Johnson WH Jr, Saul JP, Perez-Atayde AR, Spirito P, Wright GB, Kanter RJ, Seidman CE, Seidman JG (2005) Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 352:362–372PubMedCrossRefGoogle Scholar
  4. 4.
    Aumuller G, Renneberg H, Hasilik A (1997) Distribution and subcellular localization of a lysosome-associated protein in human genital organs. Cell Tissue Res 287:335–342PubMedCrossRefGoogle Scholar
  5. 5.
    Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284PubMedCrossRefGoogle Scholar
  6. 6.
    Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211PubMedCrossRefGoogle Scholar
  7. 7.
    Cha Y, Holland SM, August JT (1990) The cDNA sequence of mouse LAMP-2. Evidence for two classes of lysosomal membrane glycoproteins. J Biol Chem 265:5008–5013PubMedGoogle Scholar
  8. 8.
    Collins KA, Korcarz CE, Shroff SG, Bednarz JE, Fentzke RC, Lin H, Leiden JM, Lang RM (2001) Accuracy of echocardiographic estimates of left ventricular mass in mice. Am J Physiol Heart Circ Physiol 280:H1954–H1962PubMedGoogle Scholar
  9. 9.
    Danon MJ, Oh SJ, DiMauro S, Manaligod JR, Eastwood A, Naidu S, Schliselfeld LH (1981) Lysosomal glycogen storage disease with normal acid maltase. Neurology 31:51–57PubMedGoogle Scholar
  10. 10.
    Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J (2000) Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 101:33–39PubMedGoogle Scholar
  11. 11.
    Dobbin K, Simon R (2002) Comparison of microarray designs for class comparison and class discovery. Bioinformatics 18:1438–1445PubMedCrossRefGoogle Scholar
  12. 12.
    Eisen MB, Brown PO (1999) DNA arrays for analysis of gene expression. Methods Enzymol 303:179–205PubMedGoogle Scholar
  13. 13.
    Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13:137–145PubMedCrossRefGoogle Scholar
  14. 14.
    Fukuda M (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266:21,327–21,330Google Scholar
  15. 15.
    Fukuda M, Viitala J, Matteson J, Carlsson SR (1988) Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Comparison of their deduced amino acid sequences. J Biol Chem 263:18,920–18,928Google Scholar
  16. 16.
    Georgakopoulos D, Kass D (2001) Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart. J Physiol 534:535–545PubMedCrossRefGoogle Scholar
  17. 17.
    Granger BL, Green SA, Gabel CA, Howe CL, Mellman I, Helenius A (1990) Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem 265:12,036–12,043Google Scholar
  18. 18.
    Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP (1990) Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 85:1599–1613PubMedCrossRefGoogle Scholar
  19. 19.
    Hasenfuss G, Reinecke H, Studer R, Pieske B, Meyer M, Drexler H, Just H (1996) Calcium cycling proteins and force-frequency relationship in heart failure. Basic Res Cardiol 2(Suppl 91):S17–S22CrossRefGoogle Scholar
  20. 20.
    Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quackenbush J (2000) A concise guide to cDNA microarray analysis. Biotechniques 29:548–550, 552–544, 556 passimPubMedGoogle Scholar
  21. 21.
    Ho MK, Springer TA (1983) Tissue distribution, structural characterization, and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity. J Biol Chem 258:636–642PubMedGoogle Scholar
  22. 22.
    Janssen PM, Hunter WC (1995) Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. Am J Physiol 269:H676–H685PubMedGoogle Scholar
  23. 23.
    Janssen PM, Stull LB, Marban E (2002) Myofilament properties comprise the rate-limiting step for cardiac relaxation at body temperature in the rat. Am J Physiol Heart Circ Physiol 282:H499–H507PubMedGoogle Scholar
  24. 24.
    Kirchhefer U, Jones LR, Begrow F, Boknik P, Hein L, Lohse MJ, Riemann B, Schmitz W, Stypmann J, Neumann J (2004) Transgenic triadin 1 overexpression alters SR Ca2+ handling and leads to a blunted contractile response to beta-adrenergic agonists. Cardiovasc Res 62:122–134PubMedCrossRefGoogle Scholar
  25. 25.
    Kurtz DM, Rinaldo P, Rhead WJ, Tian L, Millington DS, Vockley J, Hamm DA, Brix AE, Lindsey JR, Pinkert CA, O’Brien WE, Wood PA (1998) Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci USA 95:15,592–15,597Google Scholar
  26. 26.
    Landgrebe J, Bretz F, Brunner E (2004) Efficient two-sample designs for microarray experiments with biological replications. In Silico Biol 4:461–470PubMedGoogle Scholar
  27. 27.
    Mattei MG, Matterson J, Chen JW, Williams MA, Fukuda M (1990) Two human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2, are encoded by genes localized to chromosome 13q34 and chromosome Xq24-25, respectively. J Biol Chem 265:7548–7551PubMedGoogle Scholar
  28. 28.
    Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700PubMedCrossRefGoogle Scholar
  29. 29.
    Monnig G, Wiekowski J, Kirchhof P, Stypmann J, Plenz G, Fabritz L, Bruns HJ, Eckardt L, Assmann G, Haverkamp W, Breithardt G, Seedorf U (2004) Phytanic acid accumulation is associated with conduction delay and sudden cardiac death in sterol carrier protein-2/sterol carrier protein-x deficient mice. J Cardiovasc Electrophysiol 15:1310–1316PubMedCrossRefGoogle Scholar
  30. 30.
    Morgan JP, Erny RE, Allen PD, Grossman W, Gwathmey JK (1990) Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 81:III21–32PubMedGoogle Scholar
  31. 31.
    Murphy AM, Kogler H, Georgakopoulos D, McDonough JL, Kass DA, Van Eyk JE, Marban E (2000) Transgenic mouse model of stunned myocardium. Science 287:488–491PubMedCrossRefGoogle Scholar
  32. 32.
    Musumeci O, Rodolico C, Nishino I, Di Guardo G, Migliorato A, Aguennouz M, Mazzeo A, Messina C, Vita G, Toscano A (2005) Asymptomatic hyperCKemia in a case of Danon disease due to a missense mutation in Lamp-2 gene. Neuromuscul Disord 15:409–411PubMedCrossRefGoogle Scholar
  33. 33.
    Nishino I (2001) [Danon disease]. Ryoikibetsu Shokogun Shirizu 225–229Google Scholar
  34. 34.
    Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910PubMedCrossRefGoogle Scholar
  35. 35.
    Noguchi Y, Himeno M, Sasaki H, Tanaka Y, Kono A, Sakaki Y, Kato K (1989) Isolation and sequencing of a cDNA clone encoding 96 kDa sialoglycoprotein in rat liver lysosomal membranes. Biochem Biophys Res Commun 164:1113–1120PubMedCrossRefGoogle Scholar
  36. 36.
    Peters C, von Figura K (1994) Biogenesis of lysosomal membranes. FEBS Lett 346:108–114PubMedCrossRefGoogle Scholar
  37. 37.
    Pieske B, Sutterlin M, Schmidt-Schweda S, Minami K, Meyer M, Olschewski M, Holubarsch C, Just H, Hasenfuss G (1996) Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest 98:764–776PubMedGoogle Scholar
  38. 38.
    Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1083PubMedGoogle Scholar
  39. 39.
    Strauch OF, Stypmann J, Reinheckel T, Martinez E, Haverkamp W, Peters C (2003) Cardiac and ocular pathologies in a mouse model of mucopolysaccharidosis type VI. Pediatr Res 54:701–708PubMedCrossRefGoogle Scholar
  40. 40.
    Stull LB, Leppo MK, Marban E, Janssen PM (2002) Physiological determinants of contractile force generation and calcium handling in mouse myocardium. J Mol Cell Cardiol 34:1367–1376PubMedCrossRefGoogle Scholar
  41. 41.
    Stypmann J, Engelen MA, Epping C, van Rijen HVM, Milberg P, Bruch C, Breithardt G, Tiemann K, Eckardt L (in press) Age and gender related reference values for transthoracic Doppler-echocardiography in the anesthetized CD1 mouse. Int J Card ImagingGoogle Scholar
  42. 42.
    Stypmann J, Glaser K, Roth W, Tobin DJ, Petermann I, Matthias R, Monnig G, Haverkamp W, Breithardt G, Schmahl W, Peters C, Reinheckel T (2002) Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci USA 99:6234–6239PubMedCrossRefGoogle Scholar
  43. 43.
    Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906PubMedCrossRefGoogle Scholar
  44. 44.
    ter Keurs HE, Rijnsburger WH, van Heuningen R, Nagelsmit MJ (1980) Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res 46:703–714PubMedGoogle Scholar
  45. 45.
    Wheeler DL, Church DM, Lash AE, Leipe DD, Madden TL, Pontius JU, Schuler GD, Schriml LM, Tatusova TA, Wagner L, Rapp BA (2002) Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res 30:13–16PubMedCrossRefGoogle Scholar
  46. 46.
    Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15PubMedCrossRefGoogle Scholar
  47. 47.
    Yang Z, McMahon CJ, Smith LR, Bersola J, Adesina AM, Breinholt JP, Kearney DL, Dreyer WJ, Denfield SW, Price JF, Grenier M, Kertesz NJ, Clunie SK, Fernbach SD, Southern JF, Berger S, Towbin JA, Bowles KR, Bowles NE (2005) Danon disease as an under-recognized cause of hypertrophic cardiomyopathy in children. Circulation 112:1612–1617PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2006

Authors and Affiliations

  • Jörg Stypmann
    • 1
    • 2
    • 9
  • Paul M.L. Janssen
    • 3
  • Jürgen Prestle
    • 4
  • Markus A. Engelen
    • 1
    • 5
  • Harald Kögler
    • 4
  • Renate Lüllmann-Rauch
    • 6
  • Lars Eckardt
    • 1
    • 2
  • Kurt von Figura
    • 7
  • Jobst Landgrebe
    • 7
  • Anna Mleczko
    • 7
  • Paul Saftig
    • 8
  1. 1.Department of Cardiology and AngiologyUniversity Hospital MünsterMünsterGermany
  2. 2.Interdisciplinary Center for Clinical Research, Central Project Group (ZPG 4a)Westfälische Wilhelms UniversitätMünsterGermany
  3. 3.Department of Physiology and Cell Biology The Ohio State University ColumbusUSA
  4. 4.Department of Cardiology and Pneumology University GöttingenGöttingenGermany
  5. 5.Department of Medical Physiology University Medical Center Utrecht UtrechtThe Netherlands
  6. 6.Anatomisches InstituteUniversity of KielKielGermany
  7. 7.Department of Biochemistry IIUniversity of GöttingenGöttingenGermany
  8. 8.Department of BiochemistryUniversity of KielKielGermany
  9. 9.Medizinische Klinik und Poliklinik C Kardiologie und Angiologie Universitätsklinikum MünsterMünsterGermany

Personalised recommendations