Advertisement

Basic Research in Cardiology

, Volume 100, Issue 3, pp 240–249 | Cite as

Neuregulin receptors erbB2 and erbB4 in failing human myocardium

Depressed expression and attenuated activation
  • S. RohrbachEmail author
  • B. Niemann
  • R.-E. Silber
  • J. Holtz
ORIGINAL CONTRIBUTION

Abstract

Membrane–bound and secreted neuregulin isoforms induce growth, survival and differentiation by activating erbB tyrosine kinase receptors. In cultured cardiomyocytes, erbB2 and erbB4 receptors regulate apoptosis by controlling bcl–x splicing, and conditional elimination of erbB2 induces dilative cardiomyopathy in vivo. Therefore, we analyzed expression and activation of erbB receptors in left ventricular myocardium from 32 heart failure patients, from 10 organ donors, and from 15 heart failure patients prior to and following unloading by ventricular assist devices. ErbB receptors, expressed in cardiomyocytes and noncardiomyocytes, are downregulated in failing myocardium as mRNA (which is renormalized by hemodynamic unloading) and as protein (erbB2: –25%; erbB4: –70%), their phosphorylation is reduced and bcl–x splicing is shifted towards 6.7–fold augmentation of proapoptotic Bcl–xS, compatible with attenuated erbB signaling. However, secreted and membrane–anchored neuregulin–1 isoforms, preferentially expressed in microvascular endothelium, are induced and not lowered with heart failure, while expression of erbB–inhibitory neuregulin isoforms or of autoinhibitory soluble erbB isoforms could not be demonstrated as potential causes of erbB receptor inhibition. We conclude that erbB receptor inactivation by unknown mechanisms results in altered splicing of bcl–x towards enhanced formation of proapoptotic Bcl–xS, thereby contributing to enhanced apoptotic susceptibility of failing human myocardium.

Key words

Heart failure bcl–x splicing Bcl–xS/Bcl–xL apoptosis erbB2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB, Kelly RA (1999) NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Physiol 277:H2026–H2037Google Scholar
  2. 2.
    Baron AT, Cora EM, Lafky JM, Boardman CH, Buenafe MC, Rademaker A, Liu D, Fishman DA, Podratz KC, Maihle NJ (2003) Soluble epidermal growth factor receptor (sEGFR/sErbB1) as a potential risk, screening, and diagnostic serum biomarker of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 12:103–113Google Scholar
  3. 3.
    Bartling B, Milting H, Schumann H, Darmer D, Arusoglu L, Koerner MM, El-Banayosy A, Koerfer R, Holtz J, Zerkowski HR (1999) Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 100 (suppl II):II216–II223Google Scholar
  4. 4.
    Birks EJ, Latif N, Owen V, Bowles C, Felkin LE, Mullen AJ, Khaghani A, Barton PJ, Polak JM, Pepper JR, Banner NR, Yacoub MH (2001) Quantitative myocardial cytokine expression and activation of the apoptotic pathway in patients who require left ventricular assist devices. Circulation 104 (Suppl 1):I233–1240Google Scholar
  5. 5.
    Burden S, Yarden Y (1997) Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18:847–855Google Scholar
  6. 6.
    Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J Jr, Chien KR, Lee KF (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465Google Scholar
  7. 7.
    Deng MC, Erren M, Tjan TD, Tamminga N, Werntze B, Zimmermann P, Weyand M, Hammel D, Schmidt C, Scheld HH (1999) Left ventricular assist system support is associated with persistent in.ammation and temporary immunosuppression. Thorac Cardiovasc Surg 47 (Suppl 2):326–331Google Scholar
  8. 8.
    Doherty JK, Bond C, Jardim A, Adelman JP, Clinton GM (1999) The HER-2/neu receptor tyrosine kinase gene encodes a secreted autoinhibitor. Proc Natl Acad Sci USA 96:10869–10874Google Scholar
  9. 9.
    Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14–30Google Scholar
  10. 10.
    Garratt AN, Britsch S, Birchmeier C (2000) Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 22:987–896Google Scholar
  11. 11.
    Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–394Google Scholar
  12. 12.
    Grimm S, Weinstein EJ, Krane IM, Leder P (1998) Neu differentiation factor (NDF), a dominant oncogene, causes apoptosis in vitro and in vivo. J Exp Med 188:1535–1539Google Scholar
  13. 13.
    Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677Google Scholar
  14. 14.
    Hofstaetter B, Taimor G, Inserte J, Garcia- Dorado D, Piper HM (2002) Inhibition of apoptotic responses after ischemic stress in isolated hearts and cardiomyocytes. Basic Res Cardiol 97:479–488Google Scholar
  15. 15.
    Iwamoto R, Yamazaki S, Asakura M, Takashima S, Hasuwa H, Miyado K, Adachi S, Kitakaze M, Hashimoto K, Raab G, Nanba D, Higashiyama S, Hori M, Klagsbrun M, Mekada E (2003) Heparinbinding EGF-like growth factor and ErbB signaling is essential for heart function. Proc Natl Acad Sci 100:3221–3226Google Scholar
  16. 16.
    Lee H, Akita RW, Sliwkowski MX, Maihle NJ (2001) A naturally occurring secreted human ErbB3 receptor isoform inhibits heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res 61:4467–4473Google Scholar
  17. 17.
    Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398Google Scholar
  18. 18.
    Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ, Rosenzweig A (1999) Adenoviral gene transfer of activated phosphatidylinositol 3’-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 100:2373–2379Google Scholar
  19. 19.
    Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335Google Scholar
  20. 20.
    Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390Google Scholar
  21. 21.
    Meyer DJ, Zweier JL, Wang P, Samouilov A, Kuppusamy P (1995) Enzymatic/nonenzymatic formation of nitric oxide. Nature Med 1:1103–1104Google Scholar
  22. 22.
    Minn AJ, Boise LH, Thompson CB (1996) Bcl-x(S) anatagonizes the protective effects of Bcl-x(L). J Biol Chem 271:6306–6312Google Scholar
  23. 23.
    Molkentin JD, Dorn IG, 2nd (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426Google Scholar
  24. 24.
    Ozcelik C, Erdmann B, Pilz B, Wettschureck N, Britsch S, Hubner N, Chien KR, Birchmeier C, Garratt AN (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci 99:8880–8885Google Scholar
  25. 25.
    Prabhu SD, Wang G, Luo J, Gu Y, Ping P, Chandrasekar B (2003) Beta-adrenergic receptor blockade modulates Bcl-X(S) expression and reduces apoptosis in failing myocardium. J Mol Cell Cardiol 35:483–493Google Scholar
  26. 26.
    Rohrbach S, Yan X, Weinberg E, Hasan F, Bartunek J, Marchionni MA, Lorell BH (1999) Neuregulin in cardiac hypertrophy in rats with aortic stenosis: differential expression of erbB2 and erbB4 receptors. Circulation 100:407–412Google Scholar
  27. 27.
    Rosenbaum C, Karyala S, Marchionni MA, Kim HA, Krasnoselsky AL, Happel B, Isaacs I, Brackenbury R, Ratner N (1997) Schwann cells express NDF and SMDF/n-ARIA mRNAs, secrete neuregulin, and show constitutive activation of erbB3 receptors: evidence for a neuregulin autocrine loop. Exp Neurol 148:604–615Google Scholar
  28. 28.
    Sawyer DB, Zuppinger C, Miller TA, Eppenberger HM, Suter TM (2002) Modulation od anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1b and anti-erbB2: potential mechanism for Trastuzumabinduced cardiotoxicity. Circulation 105:1551–1554Google Scholar
  29. 29.
    Scheubel RJ, Bartling B, Simm A, Silber RE, Drogaris K, Darmer D, Holtz J (2002) Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: fragile balance of myocyte survival? J Am Coll Cardiol 39:481–488Google Scholar
  30. 30.
    Trachtenberg JT, Thompson WJ (1996) Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 379:174–177Google Scholar
  31. 31.
    Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA (1998) Neuregulins promote survival and growth of cardiac myocytes: persistence of erbB2 and erbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273:10261–10269Google Scholar

Copyright information

© Steinkopff Verlag 2005

Authors and Affiliations

  • S. Rohrbach
    • 1
    Email author
  • B. Niemann
    • 2
  • R.-E. Silber
    • 2
  • J. Holtz
    • 1
  1. 1.Institute of PathophysiologyMartin Luther University Halle-WittenbergHalleGermany
  2. 2.Department of Cardio-Thoracic SurgeryMartin Luther University Halle-WittenbergHalleGermany

Personalised recommendations