Basic Research in Cardiology

, Volume 100, Issue 3, pp 187–197

Erythropoietin protects the infant heart against ischemia–reperfusion injury by triggering multiple signaling pathways

  • P.  Rafiee
  • Y Shi
  • J. Su
  • K. A. PritchardJr.
  • J. S. Tweddell
  • J. E. Baker


The immediate protective effect of erythropoietin (EPO) against ischemia in heart suggests a role beyond hematopoiesis and the treatment of anemia. We determined the role of JAK/STAT and Ras/Rac/MAPK in the protective effect of EPO against ischemia–reperfusion injury in infant rabbit heart. EPO (1.0 U/ml) administered 15 minutes prior to 30–minutes global ischemia and 35 minutes reperfusion resulted in increased recovery of postischemic ventricular developed pressure in rabbit hearts. EPO exerted its immediate cardioprotective effect via activation of multiple signaling pathways by: 1) phosphorylation and activation of JAK1/2, STAT3 and STAT5A but not of STAT1α and STAT5B, 2) phosphorylation and activation of PI3 kinase and its downstream kinases Akt and Rac, 3) activation of PKCε, Raf, MEK1/2, p42/44 MAPK and p38 MAPK. Pretreatment with Wortmannin abolished EPO–induced Akt activation and phosphorylation. Pretreatment with Chelerythrine followed by EPO treatment resulted in partial inhibition of Raf activation, and abolished PKCε and p38 MAPK activation without any effect on Akt, MEK1/2 and p42/44 MAPK. PD98059 abolished MEK1/2 and p42/44 MAPK activation with no effect on Akt, Raf and p38 MAPK activation. SB203580 inhibited only p38 MAPK activation by EPO. We can conclude EPO increases immediate cardioprotection through the activation of multiple signal transduction pathways.

Key words

Ischemia molecular biology erythropoietin protein kinases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, Ghezzi P (2002) Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 952:128–134Google Scholar
  2. 2.
    Alblas J, Slager-Davidov R, Steenbergh PH, Sussenbach JS, van der Burg B (1998) The role of MAP kinase in TPA-mediated cell cycle arrest of human breast cancer cells. Oncogene 16:131–139Google Scholar
  3. 3.
    Ammarguellat F, Llovera M, Kelly PA, Goffin V (2001) Low doses of EPO activate MAP kinases but not JAK2-STAT5 in rat vascular smooth muscle cells. Biochem Biophys Res Commun 284:1031–1038Google Scholar
  4. 4.
    Arai A, Kanda E, Miura O (2002) Rac is activated by erythropoietin or interleukin-3 and is involved in activation of the Erk signaling pathway. Oncogene 21:2641–2651Google Scholar
  5. 5.
    Baker JE, Holman P, Gross GJ (1999) Preconditioning in immature rabbit hearts: role of KATP channels. Circulation 99:1249–1254Google Scholar
  6. 6.
    Boer AK, Drayer AL, Rui H, Vellenga E (2002) Prostaglandin-E2 enhances EPOmediated STAT5 transcriptional activity by serine phosphorylation of CREB. Blood 100:467–473Google Scholar
  7. 7.
    Booz GW, Day JN, Baker KM (2002) Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/ reperfusion dysfunction, and heart failure. J Mol Cell Cardiol 34:1443–1453Google Scholar
  8. 8.
    Booz GW, Day JN, Speth R, Baker KM (2002) Cytokine G-protein signaling crosstalk in cardiomyocytes: attenuation of Jak-STAT activation by endothelin-1. Mol Cell Biochem 240:39–46Google Scholar
  9. 9.
    Brar BK, Stephanou A, Knight R, Latchman DS (2002) Activation of protein kinase B/Akt by urocortin is essential for its ability to protect cardiac cells against hypoxia/reoxygenation-induced cell death. J Mol Cell Cardiol 34:483–492Google Scholar
  10. 10.
    Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol- 3-OH kinase signal transduction. Nature 376:599–602Google Scholar
  11. 11.
    Carroll MP, May WS (1994) Protein kinase C-mediated serine phosphorylation directly activates Raf-1 in murine hematopoietic cells. J Biol Chem 269:1249–1256Google Scholar
  12. 12.
    Chen C, Sytkowski AJ (2001) Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc. J Biol Chem 276:38518–38526Google Scholar
  13. 13.
    Devemy E, Billat C, Haye B (1997) Activation of Raf-1 and mitogen-activated protein kinases by erythropoietin and inositolphosphate- glycan in normal erythroid progenitor cells: involvement of protein kinase C. Cell Signal 9:41–46Google Scholar
  14. 14.
    Digicaylioglu M, Lipton SA (2001) Erythropoietin- mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412:641–647Google Scholar
  15. 15.
    Dolznig H, Habermann B, Stangl K, Deiner EM, Moriggl R, Beug H, Mullner EW (2002) Apoptosis protection by the Epo target Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Curr Biol 12:1076–1085Google Scholar
  16. 16.
    Figueroa C, Tarras S, Taylor J, Vojtek AB (2003) Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex. J Biol Chem 278:47922–47927Google Scholar
  17. 17.
    Figueroa C, Vojtek AB (2003) Akt negatively regulates translation of the ternary complex factor Elk-1. Oncogene 22:5554–5561Google Scholar
  18. 18.
    Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437Google Scholar
  19. 19.
    Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736Google Scholar
  20. 20.
    Hausenloy DJ, Mocanu MM, Yellon DM (2004) Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res 63:305–312Google Scholar
  21. 21.
    Hausenloy DJ, Mocanu MM, Yellon DM (2005) Ischemic Preconditioning Protects by Activating Pro-Survival Kinases at Reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976Google Scholar
  22. 22.
    Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274:2100–2103Google Scholar
  23. 23.
    Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serinethreonine kinase Akt/protein kinase B. Proc Natl Acad Sci USA 96:2077–2081Google Scholar
  24. 24.
    Kis A, Yellon DM, Baxter GF (2003) Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase. J Mol Cell Cardiol 35:1063–1071Google Scholar
  25. 25.
    Light PE, Bladen C, Winkfein RJ, Walsh MP, French RJ (2000) Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc Natl Acad Sci USA 97:9058–9063Google Scholar
  26. 26.
    Mancini DM, Katz SD, Lang CC, LaManca J, Hudaihed A, Androne AS (2003) Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation 107:294–299Google Scholar
  27. 27.
    Michaud NR, Fabian JR, Mathes KD, Morrison DK (1995) 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol Cell Biol 15:3390–3397Google Scholar
  28. 28.
    Mocanu MM, Baxter GF, Yue Y, Critz SD, Yellon DM (2000) The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic Res Cardiol 95:472–478Google Scholar
  29. 29.
    Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897Google Scholar
  30. 30.
    Okutani Y, Kitanaka A, Tanaka T, Kamano H, Ohnishi H, Kubota Y, Ishida T, Takahara J (2001) Src directly tyrosinephosphorylates STAT5 on its activation site and is involved in erythropoietininduced signaling pathway. Oncogene 20:6643–6650Google Scholar
  31. 31.
    Omura T, Yoshiyama M, Ishikura F, Kobayashi H, Takeuchi K, Beppu S, Yoshikawa J (2001) Myocardial ischemia activates the JAK-STAT pathway through angiotensin II signaling in in vivo myocardium of rats. J Mol Cell Cardiol 33:307–316Google Scholar
  32. 32.
    Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466Google Scholar
  33. 33.
    Rafiee P, Shi Y, Kong X, Pritchard KA Jr, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Su J, Baker JE (2002) Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection. Circulation 106:239–245Google Scholar
  34. 34.
    Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467Google Scholar
  35. 35.
    Shi Y, Rafiee P, Su J, Pritchard Jr K, Tweddell J, Baker J (2004) Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels. Basic Res Cardiol 99:173–182Google Scholar
  36. 36.
    Silverberg DS, Wexler D, Blum M, Keren G, Sheps D, Leibovitch E, Brosh D, Laniado S, Schwartz D, Yachnin T, Shapira I, Gavish D, Baruch R, Koifman B, Kaplan C, Steinbruch S, Iaina A (2000) The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J Am Coll Cardiol 35:1737–1744Google Scholar
  37. 37.
    Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA, Latchman DS (2000) Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem 275:10002–10008Google Scholar
  38. 38.
    Tilbrook PA, Colley SM, McCarthy DJ, Marais R, Klinken SP (2001) Erythropoietin- stimulated Raf-1 tyrosine phosphorylation is associated with the tyrosine kinase Lyn in J2E erythroleukemic cells. Arch Biochem Biophys 396:128–132Google Scholar
  39. 39.
    Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modi.ed reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232Google Scholar
  40. 40.
    Xuan YT, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 98:9050–9055Google Scholar
  41. 41.
    Yamaura G, Turoczi T, Yamamoto F, Siddqui MA, Maulik N, Das DK (2003) STAT signaling in ischemic heart: a role of STAT5A in ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H476–482Google Scholar
  42. 42.
    Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744Google Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  • P.  Rafiee
    • 2
    • 6
  • Y Shi
    • 2
    • 6
  • J. Su
    • 2
    • 6
  • K. A. PritchardJr.
    • 2
    • 6
  • J. S. Tweddell
    • 3
    • 5
    • 6
  • J. E. Baker
    • 1
    • 2
    • 4
    • 6
  1. 1.Pediatric Surgery Medical College of WisconsinMilwaukee, WI 53226USA
  2. 2.Medical College of WisconsinDivision of Pediatric SurgeryMilwaukee, WI 53226USA
  3. 3.Division of Cardiothoracic SurgeryMilwaukee, WI 53226USA
  4. 4.Department of Pharmacology and ToxicologyMilwaukee, WI 53226USA
  5. 5.Children’s Hospital of WisconsinMilwaukee, WI 53226USA
  6. 6.Children’s Research InstituteMilwaukee, WI 53226USA

Personalised recommendations