Skip to main content

Advertisement

Log in

Estimated dietary pesticide exposure from plant-based foods using NMF-derived profiles in a large sample of French adults

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This study, conducted in participants of the NutriNet-Santé cohort, aims to identify dietary pesticide exposure profiles (derived from Non-negative Matrix Factorization) from conventional and organic foods among a large sample of general population French adults.

Methods

Organic and conventional dietary intakes were assessed using a self-administered semi-quantitative food frequency questionnaire. Exposure to 25 commonly used pesticides was evaluated using food contamination data from Chemisches und Veterinäruntersuchungsamt Stuttgart accounting for farming system (organic or conventional). Dietary pesticide exposure profiles were identified using Non-Negative Matrix factorization (NMF), especially adapted for non-negative data with excess zeros. The NMF scores were introduced in a hierarchical clustering process.

Results

Overall, the identified clusters (N = 34,193) seemed to be exposed to the same compounds with gradual intensity. Cluster 1 displayed the lowest energy intake and estimated dietary pesticide exposure, high organic food (OF) consumption (23.3%) and a higher proportion of male participants than other groups. Clusters 2 and 5 presented intermediate energy intake, lower OF consumption and intermediate estimated pesticide exposure. Cluster 3 showed high conventional fruits and vegetable (FV) intake, high estimated pesticide exposure, and fewer smokers. Cluster 4 estimated pesticide exposure varied more across compounds than for other clusters, with highest estimated exposures for acetamiprid, azadirachtin, cypermethrin, pyrethrins, spinosad. OF proportion in the diet was the highest (31.5%).

Conclusion

Estimated dietary pesticide exposures appeared to vary across the clusters and to be related to OF proportion in the diet.

Trial registration

Clinical Trial Registry: NCT03335644.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADI:

Acceptable daily intake

ANSES:

Agence Nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail

ARfD:

Acute reference dose

CNIL:

Commission Nationale de l’Informatique et des Libertés

CVUA:

Chemisches und Veterinäruntersuchungsamt

EAT:

Etude de l’Alimentation Totale

EDI:

Estimated daily intake

EFSA:

European food and safety authority

EudraCT:

European Union drug regulating Authorities clinical trials

FFQ:

Food frequency questionnaire

IRB INSERM:

Institutional review board of the French institute for health and medical research

MESA:

Multi-ethnic study of atherosclerosis

MUFA:

Mono unsaturated fatty acids

NMF:

Non-negative matrix factorization

PUFA:

Poly unsaturated fatty acids

SFA:

Saturated fatty acids

References

  1. Popp J, Pető K, Nagy J (2013) Pesticide productivity and food security. A review. Agron Sustain Dev 33:243–255. https://doi.org/10.1007/s13593-012-0105-x

    Article  Google Scholar 

  2. Eurostat—Tables, Graphs and Maps Interface (TGM) map. https://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language=en&pcode=tai02&toolbox=types. Accessed 28 Jun 2019

  3. L’utilisation des pesticides en France : état des lieux et perspectives de réduction. https://agriculture.gouv.fr/lutilisation-des-pesticides-en-france-etat-des-lieux-et-perspectives-de-reduction. Accessed 9 Oct 2019

  4. Collectif INSERM. Pesticides : Effets sur la santé, une expertise collective de l’Inserm. Salle Presse Inserm. 2013. https://presse.inserm.fr/pesticides-effets-sur-la-sante-une-expertise-collective-de-linserm/8463/

  5. Garnett T (2013) Food sustainability: problems, perspectives and solutions. Proc Nutr Soc 72:29–39. https://doi.org/10.1017/S0029665112002947

    Article  PubMed  Google Scholar 

  6. Lukowicz C, Ellero-Simatos S, Régnier M et al (2018) Metabolic effects of a chronic dietary exposure to a low-dose pesticide cocktail in mice: sexual dimorphism and role of the constitutive androstane receptor. Environ Health Perspect 126:067007. https://doi.org/10.1289/EHP2877

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mnif W, Hassine AIH, Bouaziz A et al (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8:2265–2303. https://doi.org/10.3390/ijerph8062265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. https://doi.org/10.1016/j.taap.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  9. van der Marianne M, Maartje B, Hans K et al (2012) Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environ Health Perspect 120:340–347. https://doi.org/10.1289/ehp.1103881

    Article  CAS  Google Scholar 

  10. Ntzani EE, CMN G, Evangelou E, Tzoulaki I (2013) Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Support Publ 10:497E. https://doi.org/10.2903/sp.efsa.2013.EN-497

    Article  Google Scholar 

  11. Nougadère A, Sirot V, Kadar A et al (2012) Total diet study on pesticide residues in France: levels in food as consumed and chronic dietary risk to consumers. Environ Int 45:135–150. https://doi.org/10.1016/j.envint.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  12. EU Pesticides database - European Commission. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.selection&language=EN. Accessed 27 Sep 2019

  13. Crépet A, Tressou J, Graillot V et al (2013) Identification of the main pesticide residue mixtures to which the French population is exposed. Environ Res 126:125–133. https://doi.org/10.1016/j.envres.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  14. Traoré T, Béchaux C, Sirot V, Crépet A (2016) To which chemical mixtures is the French population exposed? Mixture identification from the second French Total Diet Study. Food Chem Toxicol 98:179–188. https://doi.org/10.1016/j.fct.2016.10.028

    Article  CAS  PubMed  Google Scholar 

  15. (2017) The 2015 European Union report on pesticide residues in food. In: Eur. Food Saf. Auth. https://www.efsa.europa.eu/en/efsajournal/pub/4791. Accessed 28 Jun 2019

  16. Institut National de l’Origine et de la Qualité (INAO), Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB) (2018). Guide des produits de protection des cultures utilisables en France en Agriculture Biologique. http://www.itab.asso.fr/divers/Guide_Intrants_Inao_Mai2018.pdf. Accessed 3 Oct 2019

  17. Hercberg S, Castetbon K, Czernichow S et al (2010) The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10:242. https://doi.org/10.1186/1471-2458-10-242

    Article  PubMed  PubMed Central  Google Scholar 

  18. Touvier M, Méjean C, Kesse-Guyot E et al (2010) Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur J Epidemiol 25:287–296. https://doi.org/10.1007/s10654-010-9433-9

    Article  PubMed  Google Scholar 

  19. Touvier M, Kesse-Guyot E, Méjean C et al (2011) Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr 105:1055–1064. https://doi.org/10.1017/S0007114510004617

    Article  CAS  PubMed  Google Scholar 

  20. Vergnaud A-C, Touvier M, Méjean C et al (2011) Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Santé study. Int J Public Health 56:407–417. https://doi.org/10.1007/s00038-011-0257-5

    Article  PubMed  Google Scholar 

  21. Kesse-Guyot E, Castetbon K, Touvier M et al (2010) Relative validity and reproducibility of a food frequency questionnaire designed for French adults. Ann Nutr Metab 57:153–162. https://doi.org/10.1159/000321680

    Article  CAS  PubMed  Google Scholar 

  22. Baudry J, Méjean C, Allès B et al (2015) Contribution of Organic Food to the Diet in a Large Sample of French Adults (the NutriNet-Santé Cohort Study). Nutrients 7:8615–8632. https://doi.org/10.3390/nu7105417

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nutrinet-Santé E (2013) Table de Composition des Aliments de l’étude Nutrinet-Santé (Nutrinet-Santé Study Food Composition Database). Economica, Paris

    Google Scholar 

  24. Verger EO, Mariotti F, Holmes BA et al (2012) Evaluation of a diet quality index based on the probability of adequate nutrient intake (PANDiet) using national French and US dietary surveys. PLoS One. https://doi.org/10.1371/journal.pone.0042155

    Article  PubMed  PubMed Central  Google Scholar 

  25. De Gavelle E, Huneau J-F, Mariotti F (2018) Patterns of protein food intake are associated with nutrient adequacy in the general french adult population. Nutrients 10:226. https://doi.org/10.3390/nu10020226

    Article  CAS  PubMed Central  Google Scholar 

  26. Martínez-González MA, Sánchez-Tainta A, Corella D et al (2014) A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr 100(Suppl 1):320S–S328. https://doi.org/10.3945/ajcn.113.071431

    Article  PubMed  Google Scholar 

  27. UA-BW | CVUA Stuttgart (Startseite). https://www.cvuas.de/pub/default.asp?subid=1. Accessed 29 May 2019

  28. European Food Safety Authority (2015) The 2015 European union report on pesticide residues in food. EFSA J 15:e04791. https://doi.org/10.2903/j.efsa.2017.4791

    Article  CAS  Google Scholar 

  29. (2016) The 2014 European union report on pesticide residues in food. EFSA J 14:e04611. https://doi.org/10.2903/j.efsa.2016.4611

  30. Baudry J, Pointereau P, Seconda L et al (2019) Improvement of diet sustainability with increased level of organic food in the diet: findings from the BioNutriNet cohort. Am J Clin Nutr 109:1173–1188. https://doi.org/10.1093/ajcn/nqy361

    Article  PubMed  Google Scholar 

  31. Bognár A (2002) Tables on weight yield of food and retention factors of food constituents for the calculation of nutrient composition of cooked foods (dishes). BFE, Karlsruhe, Germany. http://www.fao.org/uploads/media/bognar_bfe-r-02-03.pdf

  32. Bergström L (1994) Nutrient losses and gains in the preparation of foods. Rapport 32/94. Livsmedelsverket (National Food Administration), Uppsala. http://www.fao.org/uploads/media/Bergstroem_1994_32_Livsmedelsverket_nutrient_losses_and_gains.pdf

  33. GEMS/Food-EURO (1995) Second workshop on reliable evaluation of low-levelcontamination of food. Report on a workshop in the frame of GEMS/Food-EURO.Kulmbach, Federal Republic of Germany, 26–27 March 1995

  34. European Food Safety Authority (2010) Management of left-censored data in dietary exposure assessment of chemical substances: Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J 8:1557

    Google Scholar 

  35. Institut Nationale de la Statistique et des Etudes Economiques (INSEE). La macro SAS CALMAR. https://www.insee.fr/fr/information/2021902. Accessed 28 June 2019

  36. Institut Nationale de la Statistique et des Etudes Economiques (INSEE) (2009) French national census data. [Internet]. https://www.insee.fr/fr/ppp/bases-dedonnees/recensement/populations-legales/default.asp?annee=2009. Accessed 28 June 2019

  37. Seung D, Lee L (2001) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst 13:556–562

    Google Scholar 

  38. Zetlaoui M, Feinberg M, Verger P, Clémençon S (2011) Extraction of food consumption systems by nonnegative matrix factorization (NMF) for the assessment of food choices. Biometrics 67:1647–1658. https://doi.org/10.1111/j.1541-0420.2011.01588.x

    Article  PubMed  Google Scholar 

  39. Khattree R, Naik DN (2000) Multivariate data reduction and discrimination with SAS software, 1st edn. Wiley-SAS, Cary

    Google Scholar 

  40. Gaujoux R, Seoighe C (2010) A flexible R package for nonnegative matrix factorization. BMC Bioinform 11:367. https://doi.org/10.1186/1471-2105-11-367

    Article  CAS  Google Scholar 

  41. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27. https://doi.org/10.1093/oxfordjournals.aje.a114366

    Article  CAS  PubMed  Google Scholar 

  42. Dolnicar S (2002) A review of unquestioned standards in using cluster analysis for data-driven market segmentation. https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1286&context=commpapers. Accessed 20 June 2020

  43. Béchaux C, Zetlaoui M, Tressou J et al (2013) Identification of pesticide mixtures and connection between combined exposure and diet. Food Chem Toxicol 59:191–198. https://doi.org/10.1016/j.fct.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  44. Curl CL, Beresford SAA, Fenske RA et al (2015) Estimating pesticide exposure from dietary intake and organic food choices: the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect 123:475–483. https://doi.org/10.1289/ehp.1408197

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barański M, Średnicka-Tober D, Volakakis N et al (2014) Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr 112:794–811. https://doi.org/10.1017/S0007114514001366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baudry J, Debrauwer L, Durand G et al (2018) Urinary pesticide concentrations in French adults with low and high organic food consumption: results from the general population-based NutriNet-Santé. J Expo Sci Environ Epidemiol. https://doi.org/10.1038/s41370-018-0062-9

    Article  PubMed  Google Scholar 

  47. Andreeva VA, Salanave B, Castetbon K et al (2015) Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French Census data: the issue of volunteer bias revisited. J Epidemiol Community Health 69:893–898. https://doi.org/10.1136/jech-2014-205263

    Article  PubMed  Google Scholar 

  48. Boizot-Szantai C, Hamza O, Soler L-G (2017) Organic consumption and diet choice: an analysis based on food purchase data in France. Appetite 117:17–28. https://doi.org/10.1016/j.appet.2017.06.003

    Article  PubMed  Google Scholar 

  49. Agence Bio (2015) Baromètre de Consommation et de Perception des Produits Biologiques en France. https://www.agencebio.org/sites/default/files/upload/documents/4_Chiffres/BarometreConso/barometre_agence_bio_public.pdf. Accessed 28 June 2019

  50. Valcke M, Bourgault M-H, Rochette L et al (2017) Human health risk assessment on the consumption of fruits and vegetables containing residual pesticides: a cancer and non-cancer risk/benefit perspective. Environ Int 108:63–74. https://doi.org/10.1016/j.envint.2017.07.023

    Article  CAS  PubMed  Google Scholar 

  51. Reiss R, Johnston J, Tucker K et al (2012) Estimation of cancer risks and benefits associated with a potential increased consumption of fruits and vegetables. Food Chem Toxicol 50:4421–4427. https://doi.org/10.1016/j.fct.2012.08.055

    Article  CAS  PubMed  Google Scholar 

  52. Arena M, Auteri D, Barmaz S et al (2018) Peer review of the pesticide risk assessment of the active substance copper compounds copper(I), copper(II) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper(I) oxide. Bordeaux mixture EFSA J 16:e05152. https://doi.org/10.2903/j.efsa.2018.5152

    Article  CAS  PubMed  Google Scholar 

  53. Yigit N, Velioglu YS (2019) Effects of processing and storage on pesticide residues in foods. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1702501

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We especially thank Cédric Agaesse, Vristi Desan and Cynthia Perlin (dietitians); Thi Hong Van Duong, Younes Esseddik (IT manager), Paul Flanzy, Régis Gatibelza, Jagatjit Mohinder and Aladi Timera (computer scientists); Julien Allegre, Nathalie Arnault, Laurent Bourhis and Fabien Szabo de Edelenyi, PhD (supervisor) (data-manager/statisticians) for their technical contribution to the NutriNet-Santé study and Nathalie Druesne-Pecollo, PhD (operational manager). We also thank the CVUAS for the pesticide residue database and Noémie Soton for her contribution to the data management of the CVUAS database. We warmly thank all of the dedicated and conscientious volunteers involved in the NutriNet-Santé cohort.

Funding

The NutriNet-Santé study is supported by the following public institutions: French Ministry of Health (DGS), Santé Publique France, the National Institute for Health and Medical Research (INSERM), the National Institute for Agricultural Research (INRA), the National Conservatory of Arts and Crafts (CNAM) and the Sorbonne Paris Nord University. The BioNutriNet project was supported by the French National Research Agency (ANR) in the context of the 2013 Programme de Recherche Systèmes Alimentaires Durables (ANR-13-ALID-0001). Pauline Rebouillat is supported by a doctoral fellowship from Sorbonne Paris Nord University.

Author information

Authors and Affiliations

Authors

Contributions

EK-G, MT, and SH conducted the study. RV, DL, JB and EK-G conducted the research and implemented databases. PR performed statistical analyses and drafted the manuscript. All authors critically helped in the interpretation of results, revised the manuscript and provided relevant intellectual input. They all read and approved the final manuscript. EK-G supervised the study, had primary responsibility for the final content, she is the guarantor.

Corresponding author

Correspondence to Pauline Rebouillat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Appendices

Appendix 1

Detailed explanation for the non-negative matrix factorization procedure

Non-negative Matrix Factorization is a non-supervised data decomposition method, proposed by Lee to deal with non-negative data using non-negativity constraints.

This method is relevant for non-negative data with excess zeros and measurement error such as exposure to pesticides constrained by the detection limits of dosing techniques.

The purpose of NMF is to explain observed data through a limited number of components approximating the original data as accurately as possible.

The matrix representing the basis components and the matrix of mixture coefficients are constrained to have non-negative values, and no orthogonality or independence constraints are imposed on the basis components.

Let X be a matrix (n × p) containing only non-negative values and without a row or column containing only 0 and r a relatively small integer < n and < p.

The non-negative factorization of matrix X is the search for two matrices W (n × r) and H (r × p) containing only positive or zero values and whose product approaches X so that X ≈ WH.

The factorization is solved by searching for a local optimum of the optimization problem:

$$\mathrm{min} \,W, H \geq 0 [L (X, WH)].$$

L is a loss function measuring approximation quality. Since the objective is usually to reduce the dimension of the original data, the factorization rank r is in practice often chosen such that r < min(n, p). This equation is solved by a multiplicative algorithm based on a gradient descent approach.

In this study of dietary pesticide profiles, W would be the total dietary exposure to the 25 selected pesticides (previously obtained after combining contamination values for each food and foods consumed by each participant) and H the number of individuals

figure a

K, the number of NMF Components.

(Adapted from Zetlaoui et al. 2011).

Appendix 2

Flowchart for the decomposition of ingredients and matching

Selected Ingredients included in the pesticides database:

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebouillat, P., Vidal, R., Cravedi, JP. et al. Estimated dietary pesticide exposure from plant-based foods using NMF-derived profiles in a large sample of French adults. Eur J Nutr 60, 1475–1488 (2021). https://doi.org/10.1007/s00394-020-02344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02344-8

Keywords

Navigation