Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of vitamin D supplementation on cardiometabolic outcomes in children and adolescents: a systematic review and meta-analysis of randomized controlled trials



In observational studies, higher S-25-hydroxyvitamin D [S-25(OH)D] has been associated with a more favorable cardiometabolic profile in childhood, but results may be confounded. We examined effects of vitamin D supplementation on cardiometabolic outcomes in children and adolescents.


We systematically searched relevant databases for randomized controlled trials (RCTs) examining effects of vitamin D supplementation compared to placebo or a lower dose of vitamin D on blood glucose, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), glycated hemoglobin, cholesterol [total, high-density, and low-density lipoprotein (LDL-C)], triglycerides, or blood pressure. We conducted random-effects meta-analyses of weighted mean differences in all participants and in subgroups of overweight/obese versus normal weight participants with or without baseline S-25(OH)D < 50 nmol/L. We also explored associations between responses in S-25(OH)D and outcomes by meta-regression.


Fourteen RCTs with a total of 1088 participants aged 4–19 years were included. In the meta-analysis, vitamin D supplementation increased S-25(OH)D by 27 nmol/L [95% CI 16; 37] (P < 0.0001) and increased LDL-C by 0.11 mmol/L [0.02; 0.20] (P = 0.02) without any subgroup differences and a generally low to moderate heterogeneity. Vitamin D supplementation had no other effects. However, in the meta-regression analysis, HOMA-IR decreased by 0.51 points [− 0.97; − 0.04] per 10 nmol/L increase in the endpoint S-25(OH)D among overweight/obese participants (P = 0.04).


These results do not support the use of vitamin D supplementation for improving cardiometabolic health in childhood. Indicated beneficial effects on insulin resistance in those with obesity could be investigated further, while unfavorable effects on LDL-C may be a concern.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Blood glucose


Body mass index


Cardiovascular disease


Diastolic blood pressure


Glycated hemoglobin


High-density lipoprotein


Homeostatic model assessment of insulin resistance


Low-density lipoprotein


Randomized controlled trial


Systolic blood pressure


Total cholesterol




Type 2 diabetes


Tolerable upper daily intake level


Standard error of the mean


Serum 25-hydroxyvitamin D


  1. 1.

    Nguyen QM, Srinivasan SR, Xu J-H et al (2010) Utility of childhood glucose homeostasis variables in predicting adult diabetes and related cardiometabolic risk factors. Diabetes Care 33:670–675. https://doi.org/10.2337/dc09-1635

  2. 2.

    Juhola J, Magnussen CG, Viikari JSA et al (2011) Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the cardiovascular risk in Young Finns Study. J Pediatr 159:584–590. https://doi.org/10.1016/j.jpeds.2011.03.021

  3. 3.

    Chen X, Wang Y (2008) Tracking of blood pressure from childhood to adulthood a systematic review and meta-regression analysis. Circulation 117:3171–3180. https://doi.org/10.1161/CIRCULATIONAHA.107.730366

  4. 4.

    Berenson GS, Srinivasan SR, Bao W et al (1998) Association between Multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med 338:1650–1656. https://doi.org/10.1056/NEJM199806043382302

  5. 5.

    Morrison JA, Friedman LA, Wang P, Glueck CJ (2008) Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr 152:201–206. https://doi.org/10.1016/j.jpeds.2007.09.010

  6. 6.

    Juonala M, Viikari JS, Kähönen M et al (2010) Life-time risk factors and progression of carotid atherosclerosis in young adults: the Cardiovascular Risk in Young Finns study. Eur Heart J 31:1745–1751. https://doi.org/10.1093/eurheartj/ehq141

  7. 7.

    Parikh S, Guo D-H, Pollock NK et al (2012) Circulating 25-hydroxyvitamin D concentrations are correlated with cardiometabolic risk among American black and white adolescents living in a year-round sunny climate. Diabetes Care 35:1133–1138. https://doi.org/10.2337/dc11-1944

  8. 8.

    Ganji V, Zhang X, Shaikh N, Tangpricha V (2011) Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001-2006. Am J Clin Nutr 94:225–233. https://doi.org/10.3945/ajcn.111.013516

  9. 9.

    Huang K, Jiang Y-J, Fu J et al (2015) The relationship between serum 25-hydroxyvitamin d and glucose homeostasis in obese children and adolescents in zhejiang, china. Endocr Pract 21:1117–1124. https://doi.org/10.4158/EP15694.OR

  10. 10.

    Reyman M, Verrijn Stuart AA, Van Summeren M et al (2014) Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity. Int J Obes 38:46–52. https://doi.org/10.1038/ijo.2013.75

  11. 11.

    Rodríguez-Rodríguez E, Ortega RM, González-Rodríguez LG, López-Sobaler AM (2011) Vitamin D deficiency is an independent predictor of elevated triglycerides in Spanish school children. Eur J Nutr 50:373–378. https://doi.org/10.1007/s00394-010-0145-4

  12. 12.

    Birken CS, Lebovic G, Anderson LN et al (2015) Association between vitamin D and circulating lipids in early childhood. PLoS One 10:e0131938. https://doi.org/10.1371/journal.pone.0131938

  13. 13.

    Pacifico L, Anania C, Osborn JF et al (2011) Low 25(OH)D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur J Endocrinol 165:603–611. https://doi.org/10.1530/EJE-11-0545

  14. 14.

    Marcotorchino J, Gouranton E, Romier B et al (2012) Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol Nutr Food Res 56:1771–1782. https://doi.org/10.1002/mnfr.201200383

  15. 15.

    Norman AW, Frankel JB, Heldt AM, Grodsky GM (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209:823–825. https://doi.org/10.1126/science.6250216

  16. 16.

    Li YC, Kong J, Wei M et al (2002) 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110:229–238. https://doi.org/10.1172/JCI15219

  17. 17.

    Lacour B, Basile C, Drüeke T, Funck-Brentano JL (1982) Parathyroid function and lipid metabolism in the rat. Miner Electrolyte Metab 7:157–165

  18. 18.

    Kumar J, Muntner P, Kaskel FJ et al (2009) Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics 124:e362–e370. https://doi.org/10.1542/peds.2009-0051

  19. 19.

    Absoud M, Cummins C, Lim MJ et al (2011) Prevalence and predictors of vitamin D insufficiency in children: a great Britain population based study. PLoS One 6:e22179. https://doi.org/10.1371/journal.pone.0022179

  20. 20.

    Li C, Ford ES, Zhao G, Mokdad AH (2009) Prevalence of Pre-Diabetes and Its Association With Clustering of Cardiometabolic Risk Factors and Hyperinsulinemia Among U.S. Adolescents: national Health and Nutrition Examination Survey 2005–2006. Diabetes Care 32:342–347. https://doi.org/10.2337/dc08-1128

  21. 21.

    Gøbel RJ, Jensen SM, Frøkiær H et al (2012) Obesity, inflammation and metabolic syndrome in Danish adolescents. Acta Paediatri 101:192–200. https://doi.org/10.1111/j.1651-2227.2011.02493.x

  22. 22.

    Dolinsky DH, Armstrong S, Mangarelli C, Kemper AR (2013) The association between vitamin D and cardiometabolic risk factors in children: a systematic review. Clin Pediatr 52:210–223. https://doi.org/10.1177/0009922812470742

  23. 23.

    Rejnmark L, Bislev LS, Cashman KD et al (2017) Non-skeletal health effects of vitamin D supplementation: a systematic review on findings from meta-analyses summarizing trial data. PLoS One 12:e0180512. https://doi.org/10.1371/journal.pone.0180512

  24. 24.

    Institute Of Medicine (IOM) Food and Nutrition Board (2011) Dietary reference intakes for calcium and vitamin D. The National Academies Press, Washinton DC

  25. 25.

    Braegger C, Campoy C, Colomb V et al (2013) Vitamin D in the healthy European paediatric population. J Pediatr Gastroenterol Nutr 56:692–701. https://doi.org/10.1097/MPG.0b013e31828f3c05

  26. 26.

    Wang L, Song Y, Manson JE et al (2012) Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: a meta-analysis of prospective studies. Circ Cardiovasc Qual Outcomes 5:819–829. https://doi.org/10.1161/CIRCOUTCOMES.112.967604

  27. 27.

    Cashman KD, Dowling KG, Škrabáková Z et al (2016) Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr 103:1033–1044. https://doi.org/10.3945/ajcn.115.120873

  28. 28.

    Karalius VP, Zinn D, Wu J et al (2014) Prevalence of risk of deficiency and inadequacy of 25-hydroxyvitamin D in US children: nHANES 2003–2006. J Pediatr Endocrinol Metab 27:461–466. https://doi.org/10.1515/jpem-2013-0246

  29. 29.

    Higgins JPT, Altman DG, Gotzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

  30. 30.

    Belenchia AM, Tosh AK, Hillman LS, Peterson CA (2013) Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: a randomized controlled trial. Am J Clin Nutr 97:774–781. https://doi.org/10.3945/ajcn.112.050013

  31. 31.

    Kelishadi R, Salek S, Salek M et al (2014) Effects of vitamin D supplementation on insulin resistance and cardiometabolic risk factors in children with metabolic syndrome: a triple-masked controlled trial. J Pediatr (Rio J) 90:28–34. https://doi.org/10.1016/j.jpedp.2013.06.005

  32. 32.

    Sethuraman U, Zidan MA, Hanks L et al (2018) Impact of vitamin D treatment on 25 hydroxy vitamin D levels and insulin homeostasis in obese African American adolescents in a randomized trial. J Clin Transl Endocrinol 12:13–19. https://doi.org/10.1016/j.jcte.2018.03.002

  33. 33.

    Bischoff-Ferrari HA (2008) Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Adv Exp Med Biol 624:55–71. https://doi.org/10.1007/978-0-387-77574-6_5

  34. 34.

    Magge SN, Prasad D, Zemel BS, Kelly A (2018) Vitamin D3 supplementation in obese, African-American, vitamin D deficient adolescents. J Clin Transl Endocrinol 12:1–7. https://doi.org/10.1016/j.jcte.2018.03.001

  35. 35.

    Brar PC, Contreras M, Fan X, Visavachaipan N (2018) Effect of one time high dose “stoss therapy” of vitamin D on glucose homeostasis in high risk obese adolescents. Arch Endocrinol Metab 62:193–200. https://doi.org/10.20945/2359-3997000000024

  36. 36.

    Dong Y, Stallmann-Jorgensen IS, Pollock NK et al (2010) A 16-week randomized clinical trial of 2000 international units daily vitamin D3 supplementation in black youth: 25-hydroxyvitamin D, adiposity, and arterial stiffness. J Clin Endocrinol Metab 95:4584–4591. https://doi.org/10.1210/jc.2010-0606

  37. 37.

    Shah S, Wilson DM, Bachrach LK (2015) Large doses of vitamin D fail to increase 25-hydroxyvitamin D levels or to alter cardiovascular risk factors in obese adolescents: a pilot study. J Adolesc Health 57:19–23. https://doi.org/10.1016/j.jadohealth.2015.02.006

  38. 38.

    Javed A, Vella A, Balagopal PB et al (2015) Cholecalciferol supplementation does not influence β-cell function and insulin action in obese adolescents: a prospective double-blind randomized trial. J Nutr 145:284–290. https://doi.org/10.3945/jn.114.202010

  39. 39.

    Nader NS, Aguirre Castaneda R, Wallace J et al (2014) Effect of vitamin D3 supplementation on serum 25(OH)D, lipids and markers of insulin resistance in obese adolescents: a prospective, randomized, placebo-controlled pilot trial. Horm Res Paediatr 82:107–112. https://doi.org/10.1159/000362449

  40. 40.

    Smith TJ, Tripkovic L, Hauger H et al (2018) Winter cholecalciferol supplementation at 51°N has no effect on markers of cardiometabolic risk in healthy adolescents aged 14-18 years. J Nutr 148:1269–1275. https://doi.org/10.1093/jn/nxy079

  41. 41.

    Hauger H, Mølgaard C, Mortensen C et al (2018) Winter cholecalciferol supplementation at 55°n has no effect on markers of cardiometabolic risk in healthy children aged 4–8 years. J Nutr 148:1261–1268. https://doi.org/10.1093/jn/nxy080

  42. 42.

    Ferira AJ, Laing EM, Hausman DB et al (2016) Vitamin D supplementation does not impact insulin resistance in black and white children. J Clin Endocrinol Metab 101:1710–1718. https://doi.org/10.1210/jc.2015-3687

  43. 43.

    Putman MS, Pitts SAB, Milliren CE et al (2013) A randomized clinical trial of vitamin D supplementation in healthy adolescents. J Adolesc Health 52:592–598. https://doi.org/10.1016/j.jadohealth.2012.10.270

  44. 44.

    Namakin K, Tavakoli F, Zardast M (2015) Effect of Vitamin D supplementation on lipid profile in children aged 10-14 years old. Int J Pediatr 3:987–994. https://doi.org/10.22038/IJP.2015.5141

  45. 45.

    Webb AR, Kline L, Holick MF (1988) Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 67:373–378. https://doi.org/10.1210/jcem-67-2-373

  46. 46.

    O’Neill C, Kazantzidis A, Ryan M et al (2016) Seasonal changes in vitamin D-effective UVB availability in Europe and associations with population serum 25-hydroxyvitamin D. Nutrients 8:533. https://doi.org/10.3390/nu8090533

  47. 47.

    Jorde R, Grimnes G (2011) Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Prog Lipid Res 50:303–312. https://doi.org/10.1016/j.plipres.2011.05.001

  48. 48.

    Ference BA, Ginsberg HN, Graham I et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38:2459–2472. https://doi.org/10.1093/eurheartj/ehx144

  49. 49.

    Wang H, Xia N, Yang Y, Peng D-Q (2012) Influence of vitamin D supplementation on plasma lipid profiles: a meta-analysis of randomized controlled trials. Lipids Health Dis 11:42. https://doi.org/10.1186/1476-511X-11-42

  50. 50.

    Nordic Council of Ministers (2014) Nordic nutrition recommendations 2012—integrating nutrition and physical activity, 5th edn. Norden, Copenhagen

  51. 51.

    Farrokhian A, Raygan F, Bahmani F et al (2017) Long-term vitamin D supplementation affects metabolic status in vitamin D-deficient type 2 diabetic patients with coronary artery disease. J Nutr 147:384–389. https://doi.org/10.3945/jn.116.242008

  52. 52.

    von Hurst PR, Stonehouse W, Coad J (2010) Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—a randomised, placebo-controlled trial. Br J Nutr 103:549–555. https://doi.org/10.1017/S0007114509992017

  53. 53.

    Haffner S, Temprosa M, Crandall J et al (2005) Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes 54:1566–1572. https://doi.org/10.2337/diabetes.54.5.1566

  54. 54.

    Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403. https://doi.org/10.1056/NEJMoa012512

  55. 55.

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2012) Scientific opinion on the tolerable upper intake level of vitamin D. EFSA J 10:2813. https://doi.org/10.2903/j.efsa.2012.2813

  56. 56.

    Drincic AT, Armas LAG, van Diest EE, Heaney RP (2012) Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 20:1444–1448. https://doi.org/10.1038/oby.2011.404

  57. 57.

    Holick MF, Binkley NC, Bischoff-Ferrari HA et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930. https://doi.org/10.1210/jc.2011-0385

  58. 58.

    Laing EM, Lewis RD (2018) New concepts in vitamin D requirements for children and adolescents: a controversy revisited. Front Horm Res 50:42–65. https://doi.org/10.1159/000486065

  59. 59.

    Scientific Advisory Committee on Nutrition (SACN) (2016) Vitamin D and health report

  60. 60.

    McMullan CJ, Borgi L, Curhan GC et al (2017) The effect of vitamin D on renin-angiotensin system activation and blood pressure: a randomized control trial. J Hypertens 35:822–829. https://doi.org/10.1097/HJH.0000000000001220

  61. 61.

    Mousa A, Naderpoor N, de Courten MP et al (2017) Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults: a randomized placebo-controlled trial. Am J Clin Nutr 105:1372–1381. https://doi.org/10.3945/ajcn.117.152736

  62. 62.

    Gulseth HL, Wium C, Angel K et al (2017) Effects of vitamin D supplementation on insulin sensitivity and insulin secretion in subjects with type 2 diabetes and vitamin D deficiency: a randomized controlled trial. Diabetes Care 40:872–878. https://doi.org/10.2337/dc16-2302

  63. 63.

    Seibert E, Lehmann U, Riedel A et al (2017) Vitamin D3 supplementation does not modify cardiovascular risk profile of adults with inadequate vitamin D status. Eur J Nutr 56:621–634. https://doi.org/10.1007/s00394-015-1106-8

  64. 64.

    Muldowney S, Lucey AJ, Hill TR et al (2012) Incremental cholecalciferol supplementation up to 15 g/d throughout winter at 51-55 N has no effect on biomarkers of cardiovascular risk in healthy young and older adults. J Nutr 142:1519–1525. https://doi.org/10.3945/jn.111.154005

  65. 65.

    Zittermann A, Ernst JB, Gummert JF, Börgermann J (2014) Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: a systematic review. Eur J Nutr 53:367–374. https://doi.org/10.1007/s00394-013-0634-3

  66. 66.

    Wallace AM, Gibson S, de la Hunty A et al (2010) Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations. Steroids 75:477–488. https://doi.org/10.1016/j.steroids.2010.02.012

Download references


HH, RPL, CR, CM, MVL, and CTD designed the research; HH and RPL conducted the research, i.e., searched, screened and evaluated literature, and extracted data; HH analyzed data and wrote the paper; MVL and CR provided statistical guidance. All authors critically reviewed and approved the final manuscript.


This work was conducted with funding from the Lundbeck Foundation (R180-2014-3481).

Author information

Correspondence to Hanne Hauger.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3896 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hauger, H., Laursen, R.P., Ritz, C. et al. Effects of vitamin D supplementation on cardiometabolic outcomes in children and adolescents: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr (2020). https://doi.org/10.1007/s00394-019-02150-x

Download citation


  • Vitamin D
  • Cardiovascular risk factors
  • Children
  • Adolescents
  • Randomized controlled trials