Açai pulp supplementation as a nutritional strategy to prevent oxidative damage, improve oxidative status, and modulate blood lactate of male cyclists

  • Sara Ivone Barros Morhy Terrazas
  • Bryan Steve Martinez Galan
  • Flávia Giolo De Carvalho
  • Vinicius Paula Venancio
  • Lusânia Maria Greggi Antunes
  • Marcelo Papoti
  • Maricely Janette Uria Toro
  • Iuri Ferreira da Costa
  • Ellen Cristini de FreitasEmail author
Original Contribution



Açai pulp is a source of phytochemicals and has been associated with antioxidant, anti-inflammatory, and antigenotoxic effects. This study aimed to assess the effects of açai pulp consumption on oxidative, inflammatory, and aerobic capacity markers of cyclist athletes.

Research methods and procedures

A crossover, randomized, placebo-controlled, single-blind study was developed with ten male cyclists (33.5 ± 4.7 years old, body mass index of 23.9 ± 1.38 kg/m2, and training load around 1875 ± 238 AU/week). The athletes consumed 400 g/day of pasteurized açai pulp (AP) or placebo (PL) for 15 days, with a 30-day wash-out period between trials. Lipid peroxidation, serum antioxidant capacity, DNA damage in peripheral blood (Comet assay), IL-6 and TNF-alpha, blood lactate concentration during effort, anaerobic threshold intensity (ATi), maximum workload reached (Wmax), rating of perceived exertion threshold (RPET), and heart rate threshold (HRT) were evaluated before and after each intervention. Data were analyzed using a linear regression model with mixed effects (p ≤ 0.05).


Increased serum antioxidant capacity (p = 0.006) and decreased lipid peroxidation (p = 0.01) were observed in subjects after intervention with AP. Blood lactate levels during effort significantly decreased (by 29%, p = 0.025) and ATi increased (p = 0.006) after AP. No significant effect on DNA damage was attributed to AP consumption.


We found notable effects of AP intervention on antioxidant status in athletes. Both the reduction in blood lactate concentration and increase in ATi during the effort suggest an overall improvement in the aerobic capacity of the cyclists, confirming that AP consumption may influence variables associated with performance in endurance athletes.


Açai Anthocyanins Athletes Antioxidant DNA damage 



The authors would like to thank the cyclists for participating in this study, company Petruz Fruity Group for granting pasteurized açaí pulp to this research, M.S. Ana Rita T. Machado for capturing the DNA damage picture, Dr. Thais B. César and Dr. Ana Lucia M. Nasser for expert assistance in oxidative stress assays, and Dr. Danielle R. Gonçalves and Dr. Paulo I. Costa for expert assistance in inflammatory assays. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Sabbe S, Verbeke W, Deliza R, Matta VM, Van Damme P (2009) Consumer liking of fruit juices with different açai (Euterpe oleracea Mart.) concentrations. J Food Sci 74:S171–S176PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Schreckinger ME, Lotton J, Lila MA, de Mejia EG (2010) Berries from South America: a comprehensive review on chemistry, health potential, and commercialization. J Med Food 13:233–246PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Del Pozo-Insfran D, Brenes CH, Talcott ST (2004) Phytochemical composition and pigment stability of acai (Euterpe oleracea Mart.). J Agric Food Chem 52:1539–1545PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Yamaguchi KK, Pereira LF, Lamarao CV, Lima ES, Da Veiga-Junior VF (2015) Amazon açai: chemistry and biological activities: a review. Food Chem 179:137–151PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Elkington LJ, Gleeson M, Pyne DB, Callister R, Wood LG (2015) Inflammation and immune function: can antioxidants help the endurance athlete? In: Lamprecht M (ed) Antioxidants in sport nutrition. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  6. 6.
    Tomasello B, Grasso S, Malfa G, Stella S, Favetta M, Renis M (2012) Double-face activity of resveratrol in voluntary runners: assessment of DNA damage by comet assay. J Med Food 15:441–447PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN (2010) Montgomery cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc 43:1544–1551CrossRefGoogle Scholar
  8. 8.
    Davis JM, Carlstedt CJ, Chen S, Carmichael MD, Murphy EA (2010) The dietary flavonoid quercetin increases VO2 max and endurance capapcity. Int J Sport Nutr Exerc Metab 20:56–62PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sadowska-Krępa E, Kłapcińska B, Podgórski T, Szade B, Tyl K, Hadzik A (2015) Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol Sport 32:161–168PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Carvalho-Peixoto J, Moura MR, Cunha FA, Lollo PC, Monteiro WD, Carvalho LM et al (2015) Consumption of açai (Euterpe oleracea Mart.) functional beverage reduces muscle stress and improves effort tolerance in elite athletes: a randomized controlled intervention study. Appl Physiol Nutr Metab 40:725–733PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Del Bo′ C, Riso P, Campolob J, Møller P, Loft S, Klimis-Zacas D et al (2013) A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr Res 33:220–227CrossRefGoogle Scholar
  12. 12.
    Pontes J, Pfrimer K, Tremeschin MH, Molina MC, Chiarello PG (2010) Nutrição e Metabolismo. CONSUMO ALIMENTAR. Visualizando Porções. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  13. 13.
    Núcleo de Estudos e Pesquisas em Alimentação, Universidade Estadual de Campinas (NEPA-UNICAMP). Tabela brasileira de composição de alimentos: TACO. 4 ed. Campinas: NEPA-UNICAMP; 2011Google Scholar
  14. 14.
    Foster C (2001) A new approach to monitoring exercise training. J Strength Cond Res 15:109–115PubMedPubMedCentralGoogle Scholar
  15. 15.
    Foster C (1996) Athletic performance in relation to training load. Wis Med J 95:370–374PubMedPubMedCentralGoogle Scholar
  16. 16.
    Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381Google Scholar
  17. 17.
    Campos EZ, Milioni F, Zanuto EAC, Almeida PB, Gobbi RB, Andrade VL et al (2013) Efeito das cargas de treinamento sobre parâmetros fisiológicos de futebolistas. Motriz 19:487–493Google Scholar
  18. 18.
    Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6:197–201PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Borges PRS, Tavares EG, Guimarães IC, Rocha RP, Araujo ABS, Nunes EE et al (2016) Obtaining a protocol for extraction of phenolics from açaí fruit pulp through Plackett-Burman design and response surface methodology. Food Chem 210:189–199PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Apak R, Güçlü K, Özyürek M, Çelik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413–419CrossRefGoogle Scholar
  21. 21.
    Yagi K (1998) Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol Biol 108:101–106PubMedPubMedCentralGoogle Scholar
  22. 22.
    Janaszewska A, Bartosz G (2002) Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scand J Clin Lab Invest 62:231–236PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cohen B (2008) Explaining psychological statistics, 3rd edn. John Wiley & Sons, New YorkGoogle Scholar
  25. 25.
    Institute of Medicine (IOM) (2006) Dietary reference intakes: the essential guide to nutrient requirements,
  26. 26.
    Pala D, Barbosa PO, Silva CT, de Souza MO, Freitas FR, Volp AC, Maranhão RC, Freitas RN (2017) Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: a prospective study in women. Clin Nutr 37:618–623PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Barbosa PO, Pala D, Silva CT, Souza MO, Amaral JF, Vieira RAL et al (2016) Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutrition 32:674–680PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Santos HO (2019) Effect of Açaí (Euterpe oleracea) intake on vascular function and lipid profile: what is the recommendation? Int J Cardiovasc Sci 32:190–192Google Scholar
  29. 29.
    Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP (2006) Phytochemical and nutrient composition of the freeze-dried Amazonian palm Berry, Euterpe oleracea Mart. (Acai). Agric Food Chem 54:8598–8603CrossRefGoogle Scholar
  30. 30.
    Gammone MA, Riccion IG, Gaspare P, D’Orazio N (2019) Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients 11(1):46CrossRefGoogle Scholar
  31. 31.
    Black KE, Witard OC, Baker D, Healey P, Lewis V, Tavares F et al (2018) Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players. Eur J Sport Sci 18:1–11CrossRefGoogle Scholar
  32. 32.
    Esquius L, Garcia-Retortillo S, Balagué N, Hristovski R, Javierre C (2019) Physiological- and performance-related effects of acute olive oil supplementation at moderate exercise intensity. J Int Soc Sports Nutr 16:12PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Edirisinghe I, Banaszewski K, Cappozzo J, Sandhya K, Ellis CL, Tadapaneni R et al (2011) Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br J Nutr 106:913–922PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Puglisi MJ, Vaishnav U, Shrestha S, Torres-Gonzalez M, Wood RJ, Volek JS et al (2008) Raisins and additional walking have distinct effects on plasma lipids and inflammatory cytokines. Lipids Health Dis 7:1–9CrossRefGoogle Scholar
  35. 35.
    Spormann MT, Albert FW, Rath T, Dietrich H, Will F, Stockis JP et al (2008) Anthocyanin/polyphenolic–rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiol Biomark Prev 17:3372–3380CrossRefGoogle Scholar
  36. 36.
    Hoelzl C, Knasmuller S, Misik M, Collins A, Dusinska M, Nersesyan A (2009) Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: recent results and trends. Mutat Res 681:68–79PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Staruchova M, Collins AR, Volkovova K, Mislanova C, Kovacikova Z, Tulinska J et al (2008) Occupational exposure to mineral fibres., biomarkers of oxidative damage and antioxidant defence and associations with DNA damage and repair. Mutagenesis 23:249–260PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Xiao Dan, Wang Haiyan, Han Daxiong (2016) Single and combined genotoxicity effects of six pollutants on THP-1cells. Food and Chem Toxicol 95:96–102CrossRefGoogle Scholar
  39. 39.
    Chequer FMD, Venâncio VP, Bianchi MLP, Antunes LMG (2012) Genotoxic and mutagenic effects of erythrosine B, a xanthene food dye, on HepG2 cells. Food Chem Toxicol 50:3447–3451PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    You Y, Yuan X, Lee HJ, Huang W, Jin W, Zhan J (2015) Mulberry and mulberry wine extract increase the number of mitochondria during brown adipogenesis. Food Funct 6:401–408PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mankowski RT, Anton SD, Buford TW, Leeuwenburgh C (2015) Dietary antioxidants as modifiers of physiologic adaptations to exercise. Med Sci Sports Exerc 47:1857–1868PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nieman DC, Henson DA, McAnulty SR, McAnulty LS, Morrow JD, Ahmed A, Heward CB (2004) Vitamin E and immunity after the Kona Triathlon World Championship. Med Sci Sports Exerc 36:1328–1335PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Atalay M, Lappalainen J, Sen CK (2006) Dietary anti-oxidants for the athlete. Curr Sports Med Rep 5:182–186PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Fernandes I, Freitas V, Mateus N (2014) Anthocyanins and human health: how gastric absorption may influence acute human physiology. Nutr Aging 2:1–14Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sara Ivone Barros Morhy Terrazas
    • 1
  • Bryan Steve Martinez Galan
    • 1
  • Flávia Giolo De Carvalho
    • 2
  • Vinicius Paula Venancio
    • 3
  • Lusânia Maria Greggi Antunes
    • 3
  • Marcelo Papoti
    • 2
  • Maricely Janette Uria Toro
    • 4
  • Iuri Ferreira da Costa
    • 4
  • Ellen Cristini de Freitas
    • 1
    • 2
    Email author
  1. 1.Department of Food and Nutrition. School of Pharmaceutical Sciences of AraraquaraState University of São Paulo, FCF UNESPAraraquaraBrazil
  2. 2.School of Physical Education and Sport of Ribeirão PretoUniversity of São Paulo, EEFERP/USPRibeirão PretoBrazil
  3. 3.School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São Paulo, FCFRP/USPRibeirão PretoBrazil
  4. 4.Center of Natural Sciences and TechnologyState University of Pará, UEPABelémBrazil

Personalised recommendations