Tuscany Sangiovese grape juice imparts cardioprotection by regulating gene expression of cardioprotective C-type natriuretic peptide

  • B. Svezia
  • M. Cabiati
  • M. Matteucci
  • C. Passino
  • M. E. Pè
  • V. Lionetti
  • S. Del RyEmail author
Original Contribution



A regular intake of red grape juice has cardioprotective properties, but its role on the modulation of natriuretic peptides (NPs), in particular of C-type NP (CNP), has not yet been proven. The aims were to evaluate: (1) in vivo the effects of long-term intake of Tuscany Sangiovese grape juice (SGJ) on the NPs system in a mouse model of myocardial infarction (MI); (2) in vitro the response to SGJ small RNAs of murine MCEC-1 under physiological and ischemic condition; (3) the activation of CNP/NPR-B/NPR-C in healthy human subjects after 7 days’ SGJ regular intake.


(1) C57BL/6J male and female mice (n = 33) were randomly subdivided into: SHAM (n = 7), MI (n = 15) and MI fed for 4 weeks with a normal chow supplemented with Tuscany SGJ (25% vol/vol, 200 µl/per day) (MI + SGJ, n = 11). Echocardiography and histological analyses were performed. Myocardial NPs transcriptional profile was investigated by Real-Time PCR. (2) MCEC-1 were treated for 24 h with a pool of SGJ small RNAs and cell viability under 24 h exposure to H2O2 was evaluated by MTT assay. (3) Human blood samples were collected from seven subjects before and after the 7 days’ intake of Tuscany SGJ. NPs and miRNA transcriptional profile were investigated by Real-Time PCR in MCEC-1 and human blood.


Our experimental data, obtained in a multimodal pipeline, suggest that the long-term intake of SGJ promotes an adaptive response of the myocardium to the ischemic microenvironment through the modulation of the cardiac CNP/NPR-B/NPR-C system.


Our results open new avenue in the development of functional foods aimed at enhancing cardioprotection of infarcted hearts through action on the myocardial epigenome.


Sangiovese grape juice Functional food Natriuretic peptide system C-type natriuretic peptide Plant miRNAs Myocardial infarction 



This study was conducted within the context of the project entitled Cardio.MIR.San.To (Bando Nutraceutica DD 650/2014), supported by the Regione Toscana (Tuscany Region). We are grateful to Fattoria Viticcio (Greve in Chianti, Italy) for technical support.

Author contribution

SDR, VL, BS, MEP: designed research; BS, MC, MM, CP: conducted research; SDR, VL, BS: analyzed and interpreted data and wrote the manuscript. SDR, VL, MEP had primary responsibility for the final content. All authors read and approved the final manuscript.


  1. 1.
    Miller V, Mente A, Dehghan M, Rangarajan S, Zhang X, Swaminathan Dagenais G, Gupta R, Mohan V, Lear S et al (2017) Prospective Urban Rural Epidemiology (PURE) study investigators. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet 390:2037–2049PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Rautiainen S, Levitan EB, Mittleman MA, Wolk A (2015) Fruit and vegetable intake and rate of heart failure: a population-based prospective cohort of women. Eur J Heart Fail 17:20–26PubMedCrossRefGoogle Scholar
  3. 3.
    Tektonidis TG, Åkesson A, Gigante B, Wolk A, Larsson SC (2016) Adherence to a Mediterranean diet is associated with reduced risk of heart failure in men. Eur J Heart Fail 18:253–259PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bechthold A, Boeing H, Schwedhelm C, Hoffmann G, Knüppel S, Iqbal K, De Henauw S, Michels N, Devleesschauwer B, Schlesinger S, Schwingshackl L (2017) Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 17:1–20Google Scholar
  5. 5.
    Lionetti V, Tuana BS, Casieri V, Parikh M, Pierce GN (2019) Importance of functional food compounds in cardioprotection through action on the epigenome. Eur Heart J 40:575–582PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG (2000) Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148:187–197PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Nassiri-Asl M, Hosseinzadeh H (2009) Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytother Res 23:1197–1204PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Xia EQ, Deng GF, Guo YJ, Li HB (2012) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646CrossRefGoogle Scholar
  9. 9.
    Folts JD (2002) Potential health benefits from the flavonoids in grape products on vascular disease. Adv Exp Med Biol 505:95–111PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lekakis J, Rallidis LS, Andreadou I, Vamvakou G, Kazantzoglou G, Magiatis P, Skaltsounis AL, Kremastinos DT (2005) Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 12:596–600PubMedGoogle Scholar
  11. 11.
    Blumberg JB, Vita JA, Chen CY (2015) Concord grape juice polyphenols and cardiovascular risk factors: dose-response relationships. Nutrients 7:10032–10052PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Haseeb S, Alexander B, Baranchuk A (2017) Wine and cardiovascular health: a comprehensive review. Circulation 136:1434–1448CrossRefGoogle Scholar
  13. 13.
    Georgiev V, Ananga A, Tsolova V (2014) Recent advances and uses of grape flavonoids as nutraceutical. Nutrients 6:391–415PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cho S, Namkoong K, Shin M, Park J, Yang E, Ihm J, Thu VT, Kim HK, Han J (2017) Cardiovascular protective effects and clinical applications of resveratrol. J Med Food 20:1–12CrossRefGoogle Scholar
  15. 15.
    Khadem-Ansari MH, Rasmi Y, Ramezani F (2012) Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers. Open Biochem J 4:96–99CrossRefGoogle Scholar
  16. 16.
    Tenore GC, Manfra M, Stiuso P, Coppola L, Russo M, Gomez Monterrey IM, Campiglia F (2012) Antioxidant profile and in vitro cardiac radical-scavenging versus pro-oxidant effects of commercial red grape juices (Vitis vinifera L. cv. Aglianico N.). J Agric Food Chem 60:9680–9687PubMedCrossRefGoogle Scholar
  17. 17.
    de Freitas RB, Boligon AA, Rovani BT, Piana M, de Brum TF, da Silva Jesus R, Rother FC, Alves NM, Teixeira da Rocha JB, Athayde ML, Barrio JP, de Andrade ER, de Freitas Bauerman L (2013) Effect of black grape juice against heart damage from acute gamma TBI in rats. Molecules 18:12154–12167PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lionetti V (2016) The unexpected cardioprotection by epigenetic foods. JSAS 18:1–9Google Scholar
  19. 19.
    Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126PubMedCrossRefGoogle Scholar
  20. 20.
    Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144:495–500Google Scholar
  21. 21.
    Yang J, Farmer LM, Agyekum AA, Hirschi KD (2015) Detection of dietary plant-based small RNAs in animals. Cell Res 25:517–520PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, Bulluck H, Cook S, Di Lisa F, Engel FB et al (2016) From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research”. Basic Res Cardiol 111:69PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Luo Y, Wang P, Wang X, Wang Y, Mu Z, Li Q, Fu Y, Xiao J, Li G, Ma Y, Gu Y, Jin L, Ma J, Tang Q, Jiang A, Li X, Li M (2017) Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep 7:645PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS et al (2012) Executive summary: heart disease and stroke statistics - 2012 update: a report from the American Heart Association. Circulation 125:188–197CrossRefGoogle Scholar
  25. 25.
    Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, Epstein SE (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67:2050–2060PubMedCrossRefGoogle Scholar
  26. 26.
    Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988PubMedCrossRefGoogle Scholar
  27. 27.
    Lionetti V, Bianchi G, Recchia FA, Ventura C (2010) Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure. Heart Fail Rev 15:531–542PubMedCrossRefGoogle Scholar
  28. 28.
    Mann DL (2005) Left ventricular size and shape: determinants of mechanical signal transduction pathways. Heart Fail Rev 10:95–100PubMedCrossRefGoogle Scholar
  29. 29.
    Levis ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Eng J Med 339:3218Google Scholar
  30. 30.
    Del Ry S, Cabiati M, Clerico A (2013) Recent advances on natriuretic peptide system: new promising therapeutic targets for the treatment of heart failure. Pharmacol Res 76:190–198PubMedCrossRefGoogle Scholar
  31. 31.
    Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Kangawa MK (2005) C type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol 45:608–616PubMedCrossRefGoogle Scholar
  32. 32.
    Wang Y, de Waard MC, Sterner-Kock A, Stepan H, Schultheiss HP, Walther DJT (2007) Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur J Heart Fail 9:548–557PubMedCrossRefGoogle Scholar
  33. 33.
    Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, Segnani C, Prescimone T, Giannessi D, Mattii L (2011) Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides 32:1713–1718PubMedCrossRefGoogle Scholar
  34. 34.
    Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Invest 90:1145–1149PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schulz S (2005) C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides 26:1024–1034PubMedCrossRefGoogle Scholar
  36. 36.
    Costa MA, Elesgaray R, Caniffi C, Fellet A, Arranz C (2007) Role of cardiovascular nitric oxide system in C-type natriuretic peptide effects. Biochem Biophys Res Commun 359:180–186PubMedCrossRefGoogle Scholar
  37. 37.
    Caniffi C, Elesgaray R, Gironacci M, Arranz C, Costa MA (2010) C-type natriuretic peptide effects on cardiovascular nitric oxide system in spontaneously hypertensive rats. Peptides 31:1309–1318PubMedCrossRefGoogle Scholar
  38. 38.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541PubMedCrossRefGoogle Scholar
  39. 39.
    Huang WQ, Wei P, Lin RQ, Huang F (2017) Protective Effects of MicroRNA-22 against endothelial cell injury by targeting nlrp3 through suppression of the inflammasome signaling pathway in a rat model of coronary heart disease. Cell Physiol Biochem 43:1346–1358PubMedCrossRefGoogle Scholar
  40. 40.
    Del Ry S, Cabiati M, Martino A, Cavallini C, Caselli C, Aquaro GD, Battolla B, Prescimone T, Giannessi D, Mattii L, Lionetti V (2013) High concentration of C-type natriuretic peptide promotes VEGF-dependent vasculogenesis in the remodeled region of infarcted swine heart with preserved left ventricular ejection fraction. Int J Cardiol 168:2426–2434PubMedCrossRefGoogle Scholar
  41. 41.
    Casieri V, Matteucci M, Cavallini C, Torti M, Torelli M, Lionetti V (2017) Long-term intake of pasta containing barley (1-3) Beta-d-glucan increases neovascularization-mediated cardioprotection through endothelial upregulation of vascular endothelial growth factor and parkin. Sci Rep 7:13424PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hecker PA, Lionetti V, Ribeiro RF Jr, Rastogi S, Brown BH, O’Connell KA, Cox JW, Shekar KC, Gamble DM, Sabbah HN, Leopold JA, Gupte SA, Recchia FA, Stanley WC (2013) Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 6:118–126PubMedCrossRefGoogle Scholar
  43. 43.
    Belli KJ, Pinto DLP, Bertolini E, Fasoli M, Zenoni S, Tornielli GB, Pezzotti M, Meyers BC, Farina L, Pè ME, Mica E (2015) miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genom 16:393. CrossRefGoogle Scholar
  44. 44.
    Pinto DLP, Brancadoro L, Dal Santo S, De Lorenzis G, Pezzotti M, Meyers BC, Pè ME, Mica E (2016) The Influence of Genotype and Environment on Small RNA Profiles in Grapevine Berry. Front Plant Sci 7:1459Google Scholar
  45. 45.
    Cabiati M, Sabatino L, Caruso R, Verde A, Caselli C, Prescimone T, Giannessi D, Del Ry S (2013) C-type natriuretic peptide transcriptomic profiling increases in human leukocytes of patients with chronic heart failure as a function of clinical severity. Peptides 47:110–114PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Del Ry S, Cabiati M, Lionetti V, Emdin M, Recchia FA, Giannessi D (2008) Expression of C-type natriuretic peptide and of its receptor NPR-B in normal and failing heart. Peptides 29:2208–2215PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Del Ry S, Cabiati M, Lionetti V, Simioniuc A, Caselli C, Prescimone T, Emdin M, Giannessi D (2009) Asymmetrical myocardial expression of natriuretic peptides in pacing-induced heart failure. Peptides 30:1710–1713PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dushpanova A, Agostini A, Ciofini E, Cabiati M, Casieri V, Matteucci M, Del Ry S, Clerico A, Berti S, Lionetti V (2016) Gene silencing of endothelial von Willebrand factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells. Sci Rep 6:30048PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum Information for publications of Quantitative Real-Time PCR experiments. Clin Chem 55:611–622PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative rt-pcr data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–0034.11CrossRefGoogle Scholar
  51. 51.
    Martino A, Cabiati M, Campan M, Prescimone T, Minocci D, Caselli C, Rossi AM, Giannessi D, Del Ry S (2011) Selection of reference genes for normalization of real-time PCR data in minipig heart failure model and evaluation of TNF-α mRNA expression. J Biotechnol 153:92–99PubMedCrossRefGoogle Scholar
  52. 52.
    Cabiati M, Raucci S, Caselli C, Guzzardi MA, D’Amico A, Prescimone T, Giannessi D, Del Ry S (2012) Tissue-specific selection of stable reference genes for real-time PCR normalization in an obese rat model. J Mol Endocrinol 48:251–260PubMedCrossRefGoogle Scholar
  53. 53.
    Yarmarkovich M, Hirschi KD (2015) Digesting dietary miRNA therapeutics. Oncotarget 6:13848–13849PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zempleni J, Baier SR, Howard KM, Cui J (2015) Gene regulation by dietary microRNAs. Can J Physiol Pharmacol 93:1097–1102PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hirschi KD, Pruss GJ, Vance V (2015) Dietary delivery: a new avenue for microRNA therapeutics? Trends Biotechnol 33:431–432PubMedCrossRefGoogle Scholar
  56. 56.
    Wagner AE, Piegholdt S, Ferraro M, Pallauf K, Rimbach G (2015) Food derived microRNAs. Food Funct 6:714–718PubMedCrossRefGoogle Scholar
  57. 57.
    Clerico A, Giannoni A, Vittorini S, Passino C (2011) Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol 301:H12–H20PubMedCrossRefGoogle Scholar
  58. 58.
    Gardner DG (2003) Natriuretic peptides: markers or modulators of cardiac hypertrophy? Trends Endocrinol Metab 14:411–416PubMedCrossRefGoogle Scholar
  59. 59.
    Kuhn M, Voss M, Mitko M, Stypmann J, Schmid C, Kawaguchi N, Grabellus F, Baba HA (2004) Left ventricular assist device support reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure. Cardiovasc Res 64:308–314PubMedCrossRefGoogle Scholar
  60. 60.
    Moilanen AM, Rysä J, Mustonen E, Serpi R, Aro J, Tokola H, Leskinen H, Manninen A, Levijoki J, Vuolteenaho O, Ruskoaho H (2011) Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circ Heart Fail 4:483–495PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Wu LH, Zhang Q, Zhang S, Meng LY, Wang YC, Sheng CJ (2018) Effects of gene knockdown of CNP on ventricular remodeling after myocardial ischemia-reperfusion injury through NPRB/Cgmp signaling pathway in rats. J Cell Biochem 119:1804–1818PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hobbs A, Foster P, Prescott C, Scotland R, Ahluwalia A (2004) Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation 110:1231–1235PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hystad ME, Øie E, GrØgaard HK, Kuusnemi K, Vuolteenaho O, Attramadal H, Hall C (2001) Gene expression of natriuretic peptides and their receptors type-A and -C after myocardial infarction in rats. Scand J Clin Lab Invest 61:139–150PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chun YS, Hyun JY, Kwak YG, Kim IS, Kim CH, Choi E, Kim MS, Park JW (2003) Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1. Biochem J 370:149–157PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A–deficient mice. J Clin Invest 107:975–984PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhang J, Zhang BH, Yu YR, Tang CS, Qi YF (2011) Adrenomedullin protects against fructose-induced insulin resistance and myocardial hypertrophy in rats. Peptides 32:1415–1421PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Cavasin MA, Tao Z, Menon S, Yang XP (2004) Gender differences in cardiac function during early remodeling after acute myocardial infarction in mice. Life Sci 75:2181–2192PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Fang L, Gao XM, Moore XL, Kiriazis H, Su Y, Ming Z, Lim YL, Dart AM, Du XJ (2007) Differences in inflammation, MMP activation and collagen damage account for gender difference in murine cardiac rupture following myocardial infarction. J Mol Cell Cardiol 43:535–544PubMedCrossRefGoogle Scholar
  69. 69.
    van Rooij E, Fielitz J, Sutherland LB, Thijssen VL, Dimaio MJ, Shelton J, De Windt LJ, Hill JA, Olson EN (2010) Myocyte enhancer factor 2 and class II histone deacetylases control a gender-specific pathway of cardioprotection mediated by the estrogen receptor. Circ Res 106:155–165PubMedCrossRefGoogle Scholar
  70. 70.
    Acuff CG, Huang H, Steinhelper ME (1997) Estradiol induces C-type natriuretic peptide gene expression in mouse uterus. Am J Physiol 273:H2672–H2677PubMedGoogle Scholar
  71. 71.
    Klinge CM, Risinger KE, Watts MB, Beck V, Eder R, Jungbauer A (2003) Estrogenic activity in white and red wine extracts. J Agric Food Chem 51:1850–1857PubMedCrossRefGoogle Scholar
  72. 72.
    Genova G, Tosetti R, Tonutti P (2016) Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice. J Sci Food Agric 96:664–671PubMedCrossRefGoogle Scholar
  73. 73.
    Lizotte E, Grandy SA, Tremblay A, Allen BG, Fiset C (2009) Expression, distribution and regulation of sex steroid hormone receptors in mouse heart. Cell Physiol Biochem 23:75–86PubMedCrossRefGoogle Scholar
  74. 74.
    Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279:51141–51147PubMedCrossRefGoogle Scholar
  75. 75.
    Casieri V, Agostini S, Lionetti V (2014) Epigenetic modulation of myocardial angiogenic balance: an emerging therapeutic perspective for adult failing heart. Curr Angiogenes 3:3–10CrossRefGoogle Scholar
  76. 76.
    Sun L, Yau HY, Wong WY, Li RA, Huang Y, Yao X (2012) Role of TRPM2 in H2O2-induced cell apoptosis in endothelial cells. PLoS One 7:e43186PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, Zhao C, Wu J, Hu Y, Zhang J, Chen X, Zen K, Zhang CY (2015) Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem 26:505–512PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Life Science, Scuola Superiore Sant’AnnaPisaItaly
  2. 2.Institute of Clinical Physiology of CNRPisaItaly
  3. 3.Fondazione Toscana “G. Monasterio”PisaItaly

Personalised recommendations