Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation

  • Tao Wang
  • Hong Yan
  • Yingying Lu
  • Xin Li
  • Xin Wang
  • Yuanyuan Shan
  • Yanglei Yi
  • Bianfang Liu
  • Yuan Zhou
  • Xin LüEmail author
Original Contribution



The objective of the study was to evaluate the anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047, and illustrate the potential functional mechanism about the alleviation of high fat and high fructose diet (HFFD) induced obesity and related metabolic abnormalities.


C57BL/6J mice were subjected to a standard or HFFD with or without supplementation of L. rhamnosus LS-8 and L. crustorum MN047 for 10 weeks. Obesity related metabolic indices including glucose tolerance, insulin resistance, serum lipid, liver function, hormones and inflammatory cytokines were assessed by standard protocols. For the monitoring of inflammatory response and lipid metabolism, transcriptional levels were profiled in liver and/or adipose tissues. Furthermore, gut microbiota composition analyses in the fecal samples were performed using 16S rRNA gene sequencing, and gut microbial metabolites, including lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs), were also tested for the assessment of the relationship between gut microbiota variation and inflammatory response.


Administration with L. rhamnosus LS-8 and L. crustorum MN047 significantly mitigated body weight gain and insulin resistance, and inflammatory response (TNF-α, IL-1β and IL-6 levels in serum and corresponding mRNA levels in adipose tissues) was significantly inhibited in these two strains-treated mice. Moreover, L. rhamnosus LS-8 and L. crustorum MN047 could partially normalized mRNA expression levels involved in lipid metabolism including Pparγ, Srebp-1c, CD36, Fabp2 and FAS. In addition, these two strains manipulated gut microbiota by decreasing the abundance of Bacteroides and Desulfovibrio and increasing that of Lactobacillus and Bifidobacterium, which in turn raised the levels of feces SCFAs and lowered the levels of circulating LPS.


These results indicated that L. rhamnosus LS-8 and L. crustorum MN047 supplementation possessed the anti-obesity effect on the HFFD fed mice by alleviating inflammatory response and regulating gut microbiota, which further suggested that these two probiotics can be considered as an alternative dietary supplement in combination with the preventive and therapeutic strategies against obesity and related complications.

Graphic abstract


Diet-induced obesity Lipid metabolism Inflammation Lactobacillus rhamnosus LS-8 Lactobacillus crustorum MN047 Gut microbiota 



This work was financially supported by Special Fund for Agro-scientific Research in the Public Interest [Grant No. 201503135].

Author contributions

TW and XL designed the study and wrote the manuscript; HY and YL performed the experiments; XL and XW analyzed the data; YS and YY interpreted the results of experiments; BL and YZ prepared figures. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflicts of interest.

Ethical standards

All animal experiments were carried out in accordance with the Guide for the Care and Use of Laboratory Animals: Eighth Edition, ISBN-10: 0-309-15396-4, and experimental procedures were approved by the Animal Ethics Committee of Xi’an Jiaotong University.

Supplementary material

394_2019_2117_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
394_2019_2117_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 21 kb)


  1. 1.
    Shang H, Sun J, Chen YQ (2016) Clostridium Butyricum CGMCC0313.1 modulates lipid profile, insulin resistance and colon homeostasis in obese mice. PLoS One 11(4):e0154373. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li X, Xu Q, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W (2016) A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food Funct 7(12):4851–4860. CrossRefPubMedGoogle Scholar
  3. 3.
    Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. Diabetes Care 33(11):2477–2483. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pan Y-Y, Zeng F, Guo W-L, Li T-T, Jia R-B, Huang Z-R, Lv X-C, Zhang J, Liu B (2018) Effect of Grifola frondosa 95% ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. Food Funct. CrossRefPubMedGoogle Scholar
  5. 5.
    Kang JG, Park C-Y (2012) Anti-obesity drugs: a review about their effects and safety. Diabetes Metab J 36(1):13–25. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xu HY, Barnes GT, Yang Q, Tan Q, Yang DS, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig 112(12):1821–1830. CrossRefPubMedGoogle Scholar
  7. 7.
    Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132(6):2169–2180. CrossRefGoogle Scholar
  8. 8.
    Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Investig 127(1):1–4. CrossRefPubMedGoogle Scholar
  9. 9.
    Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61(2):346–354. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roselli M, Finamore A, Brasili E, Rami R, Nobili F, Orsi C, Zambrini AV, Mengheri E (2018) Beneficial effects of a selected probiotic mixture administered to high fat-fed mice before and after the development of obesity. J Funct Foods 45:321–329. CrossRefGoogle Scholar
  11. 11.
    Hsieh FC, Lan CC, Huang TY, Chen KW, Chai CY, Chen WT, Fang AH, Chen YH, Wu CS (2016) Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food Funct 7(5):2374–2388. CrossRefPubMedGoogle Scholar
  12. 12.
    Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M, Yamauchi T, Ueki K, Oishi Y, Nishimura S, Manabe I, Hashimoto H, Ohnishi Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Nagai R, Kadowaki T (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281(36):26602–26614. CrossRefPubMedGoogle Scholar
  13. 13.
    Bianconi V, Sahebkar A, Atkin SL, Pirro M (2018) The regulation and importance of monocyte chemoattractant protein-1. Curr Opin Hematol 25(1):44–51. CrossRefGoogle Scholar
  14. 14.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559. CrossRefPubMedGoogle Scholar
  15. 15.
    Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, Pierre JF, Miyoshi J, Sontag TJ, Cham CM, Reardon CA, Leone V, Chang EB (2018) Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23(4):458. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. CrossRefPubMedGoogle Scholar
  17. 17.
    Engevik MA, Versalovic J (2017) Biochemical features of beneficial microbes: foundations for therapeutic microbiology. Microbiol Spectr 5(5):35. CrossRefGoogle Scholar
  18. 18.
    Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. In: Cousins RJ, Bier DM, Bowman BA (eds) Annual review of nutrition, vol 31. Annual Reviews, Palo Alto, pp 15–31. CrossRefGoogle Scholar
  19. 19.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772. CrossRefGoogle Scholar
  20. 20.
    Mei XR, Zhang XY, Wang ZG, Gao ZY, Liu G, Hu HL, Zou L, Li XL (2016) Insulin sensitivity-enhancing activity of phlorizin is associated with lipopolysaccharide decrease and gut microbiota changes in obese and type 2 diabetes (db/db) mice. J Agric Food Chem 64(40):7502–7511. CrossRefPubMedGoogle Scholar
  21. 21.
    Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M, Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64(6):636–643. CrossRefPubMedGoogle Scholar
  22. 22.
    Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, Sung MK, McGregor RA, Choi MS (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kim B, Park KY, Ji Y, Park S, Holzapfel W, Hyun CK (2016) Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochem Biophys Res Commun 473(2):530–536. CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang LH, Wang L, Yi LH, Wang X, Zhang Y, Liu JY, Guo X, Liu L, Shao CE, Lu X (2017) A novel antimicrobial substance produced by Lactobacillus rhamnous LS-8. Food Control 73:754–760. CrossRefGoogle Scholar
  25. 25.
    Yi L, Luo L, Lü X (2018) Efficient exploitation of multiple novel bacteriocins by combination of complete genome and peptidome. Front Microbiol 9:1567. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Balakumar M, Prabhu D, Sathishkumar C, Prabu P, Rokana N, Kumar R, Raghavan S, Soundarajan A, Grover S, Batish VK, Mohan V, Balasubramanyam M (2018) Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr 57(1):279–295. CrossRefPubMedGoogle Scholar
  27. 27.
    Haffner SM, Greenberg AS, Weston WM, Chen HZ, Williams K, Freed MI (2002) Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 106(6):679–684. CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156. CrossRefPubMedGoogle Scholar
  29. 29.
    Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zubiría MG, Gambaro SE, Rey MA, Carasi P, Serradell MDLÁ, Giovambattista A (2017) Deleterious metabolic effects of high fructose intake: the preventive effect of Lactobacillus kefiri administration. Nutrients 9(5):470. CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Liu ZG, Qiao QL, Sun YL, Chen YW, Ren B, Liu XB (2017) Sesamol ameliorates diet-induced obesity in C57BL/6J mice and suppresses adipogenesis in 3T3-L1 cells via regulating mitochondria-lipid metabolism. Mol Nutr Food Res. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee E, Jung SR, Lee SY, Lee NK, Paik HD, Lim SI (2018) Lactobacillus plantarum strain Ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mrna levels associated with glucose and lipid metabolism. Nutrients 10(5):643. CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Pothuraju R, Sharma RK, Kumar KP, Chagalamarri J, Jangra S, Bhakri G, De S (2016) Anti-obesity effect of milk fermented by Lactobacillus plantarum NCDC 625 alone and in combination with herbs on high fat diet fed C57BL/6J mice. Benef Microbes 7(3):1. CrossRefGoogle Scholar
  36. 36.
    Li C, Ding Q, Nie SP, Zhang YS, Xiong T, Xie MY (2014) Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. J Agric Food Chem 62(49):11884. CrossRefPubMedGoogle Scholar
  37. 37.
    Pan WW, Myers MG (2018) Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 19(2):95–105. CrossRefPubMedGoogle Scholar
  38. 38.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770. CrossRefPubMedGoogle Scholar
  39. 39.
    Grunfeld C, Zhao C, Fuller J, Pollock A, Moser A, Friedman J, Feingold KR (1996) Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters—a role for leptin in the anorexia of infection. J Clin Investig 97(9):2152–2157. CrossRefPubMedGoogle Scholar
  40. 40.
    Liu Y, Palanivel R, Rai E, Park M, Gabor TV, Scheid MP, Xu AM, Sweeney G (2015) Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes 64(1):36–48. CrossRefPubMedGoogle Scholar
  41. 41.
    Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911. CrossRefPubMedGoogle Scholar
  42. 42.
    Cranford TL, Enos RT, Velazquez KT, McClellan JL, Davis JM, Singh UP, Nagarkatti M, Nagarkatti PS, Robinson CM, Murphy EA (2016) Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int J Obes 40(5):844–851. CrossRefGoogle Scholar
  43. 43.
    Torres S, Fabersani E, Marquez A, Gauffin-Cano P (2018) Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr. CrossRefPubMedGoogle Scholar
  44. 44.
    Zhu J, Tang HY, Zhang ZH, Zhang Y, Qiu CF, Zhang L, Huang PE, Li F (2017) Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol 43:236–242. CrossRefPubMedGoogle Scholar
  45. 45.
    Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacol Ther 130(2):202–212. CrossRefPubMedGoogle Scholar
  46. 46.
    Moya-Pérez A, Neef A, Sanz Y (2015) Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Li KK, Tian PJ, Wang SD, Lei P, Qu L, Huang JP, Shan YJ, Li BL (2017) Targeting gut microbiota: Lactobacillus alleviated type 2 diabetes via inhibiting LPS secretion and activating GPR43 pathway. J Funct Foods 38:561–570. CrossRefGoogle Scholar
  48. 48.
    Singh DP, Khare P, Bijalwan V, Baboota RK, Singh J, Kondepudi KK, Chopra K, Bishnoi M (2017) Coadministration of isomalto-oligosaccharides augments metabolic health benefits of cinnamaldehyde in high fat diet fed mice. BioFactors 43(6):821–835. CrossRefPubMedGoogle Scholar
  49. 49.
    Kang C, Wang B, Kaliannan K, Wang XL, Lang HD, Hui SC, Huang L, Zhang Y, Zhou M, Chen MT, Mi MT (2017) Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. mBio 8(3):14. CrossRefGoogle Scholar
  50. 50.
    Moreno-Navarrete JM, Ortega F, Serino M, Luche E, Waget A, Pardo G, Salvador J, Ricart W, Fruhbeck G, Burcelin R, Fernandez-Real JM (2012) Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes 36(11):1442–1449. CrossRefGoogle Scholar
  51. 51.
    Hersoug LG, Moller P, Loft S (2016) Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 17(4):297–312. CrossRefPubMedGoogle Scholar
  52. 52.
    Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA (2014) Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity 22(3):763–771. CrossRefPubMedGoogle Scholar
  53. 53.
    Thiennimitr P, Yasom S, Tunapong W, Chunchai T, Wanchai K, Pongchaidecha A, Lungkaphin A, Sirilun S, Chaiyasut C, Chattipakorn N (2018) Lactobacillus paracasei HII01, xylooligosaccharides and synbiotics reduced gut disturbance in obese rats. Nutrition 54:40–47. CrossRefPubMedGoogle Scholar
  54. 54.
    Linden DR (2014) hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal 20(5):818–830. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Floch MH (2010) The effect of probiotics on host metabolism the microbiota and fermentation. J Clin Gastroenterol 44:S19–S21. CrossRefPubMedGoogle Scholar
  56. 56.
    Chen YT, Lin YC, Lin JS, Yang NS, Chen MJ (2018) Sugary kefir strain Lactobacillus mali APS1 ameliorated hepatic steatosis by regulation of SIRT-1/Nrf-2 and gut microbiota in rats. Mol Nutr Food Res. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liang Y, Lin C, Zhang Y, Deng Y, Liu C, Yang Q (2018) Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate. Inflammopharmacology 26(4):1051–1055CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina

Personalised recommendations