Correlations between urinary concentrations and dietary intakes of flavonols in the European Prospective Investigation into Cancer and Nutrition (EPIC) study

  • Yaiza Garro-Aguilar
  • Valerie Cayssials
  • David Achaintre
  • Heiner Boeing
  • Francesca Romana Mancini
  • Yahya Mahamat-Saleh
  • Marie-Christine Boutron-Ruault
  • Tilman Kühn
  • Verena Katzke
  • Antonia Trichopoulou
  • Anna Karakatsani
  • Paschalis Thriskos
  • Giovanna Masala
  • Sara Grioni
  • Maria Santucci de Magistris
  • Rosario Tumino
  • Fulvio Ricceri
  • Inge Huybrechts
  • Antonio Agudo
  • Augustin Scalbert
  • Raul Zamora-RosEmail author
Original Contribution



In this study, we aimed to study the correlation between acute and habitual intakes of flavonols, their main food sources and their 24-h urinary concentrations in an European population.


A 24-h dietary recall (24-HDR) and 24-h urine samples were collected on the same day from a convenience subsample of 475 men and women from four countries (France, Italy, Greece and Germany) of the European Prospective Investigation into Cancer and Nutrition (EPIC) study. A standardized 24-HDR software and a country/centre-specific validated dietary questionnaire (DQ) were used to collect acute and habitual dietary data, respectively. The intake of dietary flavonols was estimated using the Phenol-Explorer database. Urinary flavonols (quercetin, isorhamnetin, and kaempferol) were analysed using tandem mass spectrometry with a previous enzymatic hydrolysis.


Weak partial Spearman correlations between both dietary acute and habitual intake and urinary concentrations of quercetin (both Rpartial ~ 0.3) and total flavonols (both Rpartial ~ 0.2) were observed. No significant correlations were found for kaempferol and isorhamentin. Regarding flavonol-rich foods, weak correlations were found between urinary concentrations of quercetin and total flavonols and the acute intake of onions and garlics, fruits, tea, and herbal tea (all Rpartial ~ 0.2). For habitual intake, statistically significant correlations were only found between urinary quercetin concentration and herbal tea (Rpartial = 0.345) and between urinary total flavonol concentration and tea, and herbal tea consumption (Rpartial ~ 0.2).


Our results suggest that urinary quercetin level can be used as potential concentration biomarkers of both acute and habitual quercetin intake, while urinary concentrations of flavonols are unlikely to be useful biomarkers of individual flavonol-rich foods.


Flavonols Quercetin Urine Biomarker EPIC 



24-hours dietary recall


Body mass index


Dietary questionnaire


European Prospective Investigation into Cancer and Nutrition


Limit of quantification


P-Aminobenzoic acid



We thank Mr Bertrand Hémon for his valuable help with the EPIC database.

Author contributions

AS and RZ-R designed the research; DA carried out the laboratory analyses; YG-A and VC performed the statistical analyses; YG-A and RZ-R drafted the manuscript; HB and AS largely contributed to the interpretation of the results; HB, FRM, YM-S, M-CB-R, TK, VK, AT, AK, PT, GM, SG, MSdeM, RT, FR, IH, AA provided data and biological samples. All authors reviewed, edited and approved the final manuscript.


The national cohorts are supported by the French National Cancer Institute (L’Institut National du Cancer; INCA Grant 2009-139); Ligue contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid; German Cancer Research Center (DKFZ); German Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Italian Association for Research on Cancer; Compagnia San Paolo, (Italy). RZ-R would like to thank the “Miguel Servet” program (CP15/00100) from the Institute of Health Carlos III and European Social Fund (ESF).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Availability of data and materials

For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at

Supplementary material

394_2019_2005_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)
394_2019_2005_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 22 kb)
394_2019_2005_MOESM3_ESM.docx (24 kb)
Supplementary material 3 (DOCX 24 kb)


  1. 1.
    Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58:4959–4969. CrossRefGoogle Scholar
  2. 2.
    Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JP (2010) Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2:1106–1131. CrossRefGoogle Scholar
  3. 3.
    Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325. CrossRefGoogle Scholar
  4. 4.
    van Dam RM, Naidoo N, Landberg R (2013) Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr Opin Lipidol 24:25–33. CrossRefGoogle Scholar
  5. 5.
    Grosso G, Godos J, Lamuela-Raventos R, Ray S, Micek A, Pajak A, Sciacca S, D’Orazio N, Del Rio D, Galvano F (2017) A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res. Google Scholar
  6. 6.
    Rothwell JA, Knaze V, Zamora-Ros R (2017) Polyphenols: dietary assessment and role in the prevention of cancers. Curr Opin Clin Nutr Metab Care 20:512–521. Google Scholar
  7. 7.
    Zamora-Ros R, Touillaud M, Rothwell JA, Romieu I, Scalbert A (2014) Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr 100:11–26. CrossRefGoogle Scholar
  8. 8.
    Zamora-Ros R, Rabassa M, Llorach R, Gonzalez CA, Andres-Lacueva C (2012) Application of dietary phenolic biomarkers in epidemiology: past, present, and future. J Agric Food Chem 60(27):6648–6657. CrossRefGoogle Scholar
  9. 9.
    Zamora-Ros R, Knaze V, Lujan-Barroso L, Slimani N, Romieu I, Fedirko V, de Magistris MS, Ericson U, Amiano P, Trichopoulou A, Dilis V, Naska A, Engeset D, Skeie G, Cassidy A, Overvad K, Peeters PH, Huerta JM, Sánchez MJ, Quirós JR, Sacerdote C, Grioni S, Tumino R, Johansson G, Johansson I, Drake I, Crowe FL, Barricarte A, Kaaks R, Teucher B, Bueno-de-Mesquita HB, van Rossum CT, Norat T, Romaguera D, Vergnaud AC, Tjønneland A, Halkjær J, Clavel-Chapelon F, Boutron-Ruault MC, Touillaud M, Salvini S, Khaw KT, Wareham N, Boeing H, Förster J, Riboli E, González CA (2011) Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-h dietary recall cohort. Br J Nutr 106:1915–1925. CrossRefGoogle Scholar
  10. 10.
    Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, Tjønneland A, Kyrø C, Fagherazzi G, Boutron-Ruault MC, Touillaud M, Katzke V, Kühn T, Boeing H, Förster J, Trichopoulou A, Valanou E, Peppa E, Palli D, Agnoli C, Ricceri F, Tumino R, de Magistris MS, Peeters PH, Bueno-de-Mesquita HB, Engeset D, Skeie G, Hjartåker A, Menéndez V, Agudo A, Molina-Montes E, Huerta JM, Barricarte A, Amiano P, Sonestedt E, Nilsson LM, Landberg R, Key TJ, Khaw KT, Wareham NJ, Lu Y, Slimani N, Romieu I, Riboli E, Scalbert A (2016) Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr 55:1359–1375. CrossRefGoogle Scholar
  11. 11.
    Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S. CrossRefGoogle Scholar
  12. 12.
    Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18:75–81CrossRefGoogle Scholar
  13. 13.
    Linseisen J, Rohrmann S (2008) Biomarkers of dietary intake of flavonoids and phenolic acids for studying diet-cancer relationship in humans. Eur J Nutr 47(Suppl 2):60–68CrossRefGoogle Scholar
  14. 14.
    Radtke J, Linseisen J, Wolfram G (2002) Fasting plasma concentrations of selected flavonoids as markers of their ordinary dietary intake. Eur J Nutr 41:203–209CrossRefGoogle Scholar
  15. 15.
    Mennen LI, Sapinho D, Ito H, Bertrais S, Galan P, Hercberg S, Scalbert A (2006) Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br J Nutr 96:191–198CrossRefGoogle Scholar
  16. 16.
    Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondière UR, Hémon B, Casagrande C, Vignat J, Overvad K, Tjønneland A, Clavel-Chapelon F, Thiébaut A, Wahrendorf J, Boeing H, Trichopoulos D, Trichopoulou A, Vineis P, Palli D, Bueno-De-Mesquita HB, Peeters PH, Lund E, Engeset D, González CA, Barricarte A, Berglund G, Hallmans G, Day NE, Key TJ, Kaaks R, Saracci R (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124CrossRefGoogle Scholar
  17. 17.
    Zamora-Ros R, Achaintre D, Rothwell JA, Rinaldi S, Assi N, Ferrari P, Leitzmann M, Boutron-Ruault MC, Fagherazzi G, Auffret A, Kühn T, Katzke V, Boeing H, Trichopoulou A, Naska A, Vasilopoulou E, Palli D, Grioni S, Mattiello A, Tumino R, Ricceri F, Slimani N, Romieu I, Scalbert A (2016) Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci Rep 6:26905. CrossRefGoogle Scholar
  18. 18.
    Slimani N, Ferrari P, Ocke M, Welch A, Boeing H, Liere M, Pala V, Amiano P, Lagiou A, Mattisson I, Stripp C, Engeset D, Charrondière R, Buzzard M, Staveren W, Riboli E (2000) Standardization of the 24-h diet recall calibration method used in the european prospective investigation into cancer and nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr 54:900–917CrossRefGoogle Scholar
  19. 19.
    Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G, Kroke A, Trichopoulos D, Trichopoulou A, Lauria C, Bellegotti M, Ocké MC, Peeters PH, Engeset D, Lund E, Agudo A, Larrañaga N, Mattisson I, Andren C, Johansson I, Davey G, Welch AA, Overvad K, Tjønneland A, Van Staveren WA, Saracci R, Riboli E (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5:1125–1145CrossRefGoogle Scholar
  20. 20.
    Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G, Salvini S, Parpinel M, Møller A, Ireland J, Becker W, Farran A, Westenbrink S, Vasilopoulou E, Unwin J, Borgejordet A, Rohrmann S, Church S, Gnagnarella P, Casagrande C, van Bakel M, Niravong M, Boutron-Ruault MC, Stripp C, Tjønneland A, Trichopoulou A, Georga K, Nilsson S, Mattisson I, Ray J, Boeing H, Ocké M, Peeters PH, Jakszyn P, Amiano P, Engeset D, Lund E, de Magistris MS, Sacerdote C, Welch A, Bingham S, Subar AF, Riboli E (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the ten European countries participating in the EPIC study. Eur J Clin Nutr 61:1037–1056CrossRefGoogle Scholar
  21. 21.
    Knaze V, Rothwell JA, Zamora-Ros R, Moskal A, Kyrø C, Jakszyn P, Skeie G, Weiderpass E, Santucci de Magistris M, Agnoli C, Westenbrink S, Sonestedt E, Trichopoulou A, Vasilopoulou E, Peppa E, Ardanaz E, Huerta JM, Boeing H, Mancini FR, Scalbert A, Slimani N (2018) A new food-composition database for 437 polyphenols in 19,899 raw and prepared foods used to estimate polyphenol intakes in adults from ten European countries. Am J Clin Nutr 1:2. Google Scholar
  22. 22.
    Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010:bap024. CrossRefGoogle Scholar
  23. 23.
    Achaintre D, Bulete A, Cren-Olive C, Li L, Rinaldi S, Scalbert A (2016) Differential isotope labelling of 38 dietary polyphenols and their quantification in urine by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Chem 88:2637–2644. CrossRefGoogle Scholar
  24. 24.
    Margetts BM, Pietinen P (1997) European Prospective Investigation into Cancer and Nutrition: validity studies on dietary assessment methods. Int J Epidemiol 26(Suppl 1):S1–S5CrossRefGoogle Scholar
  25. 25.
    Quifer-Rada P, Martínez-Huélamo M, Lamuela-Raventos RM (2007) Is enzymatic hydrolysis a reliable analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites in human fluids? Food Funct 8:2419–2424. CrossRefGoogle Scholar
  26. 26.
    Cao J, Zhang Y, Chen W, Zhao X (2010) The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. Br J Nutr 103:249–255. CrossRefGoogle Scholar
  27. 27.
    Zamora-Ros R, Rabassa M, Cherubini A, Urpi-Sarda M, Llorach R, Bandinelli S, Ferrucci L, Andres-Lacueva C (2011) Comparison of 24-h volume and creatinine-corrected total urinary polyphenol as a biomarker of total dietary polyphenols in the Invecchiare InCHIANTI study. Anal Chim Acta 704:110–115. CrossRefGoogle Scholar
  28. 28.
    Achaintre D, Gicquiau A, Li L, Rinaldi S, Scalbert A (2018) Quantification of 38 dietary polyphenols in plasma by differential isotope labelling and liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr A 1558:50–58. CrossRefGoogle Scholar
  29. 29.
    Mennen LI, Sapinho D, Ito H, Galan P, Hercberg S, Scalbert A (2008) Urinary excretion of 13 dietary flavonoids and phenolic acids in free-living healthy subjects—variability and possible use as biomarkers of polyphenol intake. Eur J Clin Nutr 62:519–525CrossRefGoogle Scholar
  30. 30.
    Burak C, Brull V, Langguth P, Zimmermann BF, Stoffel-Wagner B, Sausen U, Stehle P, Wolffram S, Egert S (2017) Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. Eur J Nutr 56:343–353. CrossRefGoogle Scholar
  31. 31.
    McGregor NR (2014) Catechol O-methyltransferase: a review of the gene and enzyme. J Dent Clin Res 1:007Google Scholar
  32. 32.
    Brevik A, Rasmussen SE, Drevon CA, Andersen LF (2004) Urinary excretion of flavonoids reflects even small changes in the dietary intake of fruits and vegetables. Cancer Epidemiol Biomarkers Prev 13:843–849Google Scholar
  33. 33.
    Erlund I, Freese R, Marniemi J, Hakala P, Alfthan G (2006) Bioavailability of quercetin from berries and the diet. Nutr Cancer 54:13–17CrossRefGoogle Scholar
  34. 34.
    Brantsaeter AL, Haugen M, Rasmussen SE, Alexander J, Samuelsen SO, Meltzer HM (2007) Urine flavonoids and plasma carotenoids in the validation of fruit, vegetable and tea intake during pregnancy in the Norwegian Mother and Child Cohort Study (MoBa). Public Health Nutr 10:838–847CrossRefGoogle Scholar
  35. 35.
    Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P, Mattila P, Jula A (2008) Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr 87:323–331CrossRefGoogle Scholar
  36. 36.
    Nielsen SE, Freese R, Kleemola P, Mutanen M (2002) Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiol Biomarkers Prev 11:459–466Google Scholar
  37. 37.
    Huxley RR, Lean M, Crozier A, John JH, Neil HA (2004) Effect of dietary advice to increase fruit and vegetable consumption on plasma flavonol concentrations: results from a randomised controlled intervention trial. J Epidemiol Community Health 58:288–289CrossRefGoogle Scholar
  38. 38.
    Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125:507–525. CrossRefGoogle Scholar
  39. 39.
    Gao Q, Pratico G, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres-Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJM, Dragsted LO (2017) A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr 12:34. CrossRefGoogle Scholar
  40. 40.
    Manach C, Milenkovic D, Van de Wiele T, Rodriguez-Mateos A, de Roos B, Garcia-Conesa MT, Landberg R, Gibney ER, Heinonen M, Tomás-Barberan F, Morand C (2017) Addressing the inter-individual variation in response to consumption of plant food bioactives: towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol Nutr Food Res. Google Scholar
  41. 41.
    Zamora-Ros R, Rothwell JA, Achaintre D, Ferrari P, Boutron-Ruault MC, Mancini FR, Affret A, Kühn T, Katzke V, Boeing H, Küppel S, Trichopoulou A, Lagiou P, La Vecchia C, Palli D, Contiero P, Panico S, Tumino R, Ricceri F, Noh H, Freisling H, Romieu I, Scalbert A (2017) Evaluation of urinary resveratrol as a biomarker of dietary resveratrol intake in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr 117:1596–1602. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yaiza Garro-Aguilar
    • 1
  • Valerie Cayssials
    • 1
  • David Achaintre
    • 2
  • Heiner Boeing
    • 3
  • Francesca Romana Mancini
    • 4
    • 5
  • Yahya Mahamat-Saleh
    • 4
    • 5
  • Marie-Christine Boutron-Ruault
    • 4
    • 5
  • Tilman Kühn
    • 6
  • Verena Katzke
    • 6
  • Antonia Trichopoulou
    • 7
  • Anna Karakatsani
    • 7
    • 8
  • Paschalis Thriskos
    • 7
  • Giovanna Masala
    • 9
  • Sara Grioni
    • 10
  • Maria Santucci de Magistris
    • 11
  • Rosario Tumino
    • 12
  • Fulvio Ricceri
    • 13
    • 14
  • Inge Huybrechts
    • 2
  • Antonio Agudo
    • 1
  • Augustin Scalbert
    • 2
  • Raul Zamora-Ros
    • 1
    Email author
  1. 1.Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO)Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
  2. 2.International Agency for Research on Cancer (IARC-WHO)LyonFrance
  3. 3.Department of EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany
  4. 4.CESP, Fac. de médecine-Univ. Paris-Sud, Fac. de médecine-UVSQ, INSERMUniversité Paris-SaclayVillejuifFrance
  5. 5.Institut Gustave RoussyVillejuifFrance
  6. 6.Division of Cancer EpidemiologyGerman Cancer Research CenterHeidelbergGermany
  7. 7.Hellenic Health FoundationAthensGreece
  8. 8.2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens“ATTIKON” University HospitalHaidariGreece
  9. 9.Cancer Risk Factors and Life-Style Epidemiology UnitInstitute for Cancer Research, Prevention and Clinical Network-ISPROFlorenceItaly
  10. 10.Epidemiology and Prevention UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  11. 11.AOU Federico IINaplesItaly
  12. 12.Cancer Regsitry and Histopathology Department“M.P Arezzzo” HospitalASP RagusaItaly
  13. 13.Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
  14. 14.Unit of EpidemiologyRegional Health Service ASL TO3GrugliascoItaly

Personalised recommendations