Advertisement

Altered gut microbiota ameliorates bone pathology in the mandible of obese–insulin-resistant rats

  • Sathima Eaimworawuthikul
  • Wannipa Tunapong
  • Titikorn Chunchai
  • Panan Suntornsaratoon
  • Narattaphol Charoenphandhu
  • Parameth Thiennimitr
  • Nipon Chattipakorn
  • Siriporn C. ChattipakornEmail author
Original Contribution
  • 56 Downloads

Abstract

Purpose

The chronic consumption of a high-fat diet (HFD) induces obese–insulin resistance and impairs jawbone health via gut dysbiosis-stimulated inflammatory process. Our previous studies demonstrated that the probiotic Lactobacillus paracasei HII01, prebiotic xylooligosaccharide (XOS), and synbiotics improved several vital organ functions by reducing gut dysbiosis in HFD-induced obese rats. However, the impacts on the cellular level of jawbone microarchitecture have not been examined. Here, we hypothesized that the supplementation of L. paracasei HII01, XOS, and synbiotics ameliorated the bone microarchitectural pathology in HFD-fed rats by reducing systemic inflammation and other metabolic parameters.

Methods

The dietary regimes (normal or high-fat diet) were provided to 48 male Wistar rats throughout 24-week experiment. After week 12, rats were given either a vehicle, pro-, pre-, or synbiotic for an additional 12 weeks before being killed. Then, blood analyses and bone histomorphometry of the jawbones were performed.

Results

The HFD-fed rats developed obese–insulin resistance with significantly elevated systemic inflammation. Bone histomorphometry of these rats showed a decrease in trabecular thickness with increased osteoclasts and active erosion surfaces. Mineral apposition and bone-formation rates were also remarkably diminished. The treatment with pro-, pre-, and synbiotics equally improved metabolic disturbance, reduced systemic inflammation, increased trabecular thickness, decreased osteoclasts and active erosion surfaces and restored mineral apposition and bone-formation rates.

Conclusion

The probiotic L. paracasei HII01, prebiotic XOS, and the synbiotics had similarly beneficial effects to improve jawbone microarchitecture in HFD-fed rats by possibly ameliorating osteoclast-related bone resorption and potentiating bone-formation activities.

Keywords

Jawbone Lactobacillus paracasei HII01 Obesity Synbiotics Xylooligosaccharide 

Notes

Acknowledgements

This work was supported by Thailand Research Fund (TRF) Grants: TRF-Senior Research Scholar RTA6080003 (to SCC), RTA6080007 (to N. Charoenphandhu), IRN60W0001 (to N. Charoenphandhu) and MRG6180187 (to PT); Mahidol University (to N. Charoenphandhu); a CMU 50th Anniversary Grant by Chiang Mai University (PHD/014/2557 SE&SCC); a NSTDA Research Chair Grant from the National Science and Technology Development Agency Thailand (N. Chattipakorn) and a Chiang Mai University Center of Excellence Award (N. Chattipakorn).

Author contributions

The authors’ responsibilities were as follows—SE, PT, and NC and SCC: designed the research; SE, WT, and TC: conducted the research; PS, NC, and PT: provided essential materials; SE, NC, and SCC: analyzed the data; SE, NC, NC, and SCC: wrote the manuscript; SCC: had primary responsibility for the final content; and all authors: read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB (2015) Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 4(3):363–370CrossRefGoogle Scholar
  2. 2.
    Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, Smith RJ, Smith SR (2011) Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrin Metab 96(6):1654–1663CrossRefGoogle Scholar
  3. 3.
    Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6(30):78.  https://doi.org/10.1186/1749-799x-6-30 Google Scholar
  4. 4.
    Eaimworawuthikul S, Tunapong W, Chunchai T, Yasom S, Wanchai K, Suntornsaratoon P, Charoenphandhu N, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2018) Effects of probiotics, prebiotics or synbiotics on jawbone in obese-insulin resistant rats. Eur J Nutr.  https://doi.org/10.1007/s00394-018-1829-4 Google Scholar
  5. 5.
    Pramojanee SN, Phimphilai M, Kumphune S, Chattipakorn N, Chattipakorn SC (2013) Decreased jaw bone density and osteoblastic insulin signaling in a model of obesity. J Dent Res 92(6):560–565CrossRefGoogle Scholar
  6. 6.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772CrossRefGoogle Scholar
  7. 7.
    da Silva SV, Renovato-Martins M, Ribeiro-Pereira C, Citelli M, Barja-Fidalgo C (2016) Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis. Obesity (Silver Spring, Md) 24(12):2522–2532CrossRefGoogle Scholar
  8. 8.
    Luo Y, Chen GL, Hannemann N, Ipseiz N, Kronke G, Bauerle T, Munos L, Wirtz S, Schett G, Bozec A (2015) Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab 22(5):886–894CrossRefGoogle Scholar
  9. 9.
    He M, Shi B (2017) Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 7:54CrossRefGoogle Scholar
  10. 10.
    Hsu E, Pacifici R (2017) From osteoimmunology to osteomicrobiology: how the microbiota and the immune system regulate bone. Calcif Tissue Int.  https://doi.org/10.1007/s00223-017-0321-0 Google Scholar
  11. 11.
    de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299(2):G440–G448CrossRefGoogle Scholar
  12. 12.
    Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713CrossRefGoogle Scholar
  13. 13.
    Ejtahed HS, Soroush AR, Angoorani P, Larijani B, Hasani-Ranjbar S (2016) Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents. Horm Metab Res 48(06):349–358CrossRefGoogle Scholar
  14. 14.
    Eaimworawuthikul S, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2017) Diet-induced obesity, gut microbiota and bone, including alveolar bone loss. Arch Oral Biol 78:65–81CrossRefGoogle Scholar
  15. 15.
    Collins FL, Kim SM, McCabe LR, Weaver CM (2017) Intestinal microbiota and bone health: the role of prebiotics, probiotics, and diet. In: Smith SY, Varela A, Samadfam R (eds) Bone toxicology. Springer International Publishing, Cham, pp 417–443CrossRefGoogle Scholar
  16. 16.
    Schepper JD, Irwin R, Kang J, Dagenais K, Lemon T, Shinouskis A, Parameswaran N, McCabe LR (2017) Probiotics in gut–bone signaling. Adv Exp Med Biol 1033:225–247CrossRefGoogle Scholar
  17. 17.
    McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13(6):363–371CrossRefGoogle Scholar
  18. 18.
    Whisner CM, Castillo LF (2018) Prebiotics, bone and mineral metabolism. Calcif Tissue Int 102(4):443–479CrossRefGoogle Scholar
  19. 19.
    Thiennimitr P, Yasom S, Tunapong W, Chunchai T, Wanchai K, Pongchaidecha A, Lungkaphin A, Sirilun S, Chaiyasut C, Chattipakorn N, Chattipakorn SC (2018) Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition 54:40–47CrossRefGoogle Scholar
  20. 20.
    Tunapong W, Apaijai N, Yasom S, Tanajak P, Wanchai K, Chunchai T, Kerdphoo S, Eaimworawuthikul S, Thiennimitr P, Pongchaidecha A, Lungkaphin A, Pratchayasakul W, Chattipakorn SC, Chattipakorn N (2017) Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur J Nutr.  https://doi.org/10.1007/s00394-017-1482-3 Google Scholar
  21. 21.
    Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, Lungkaphin A, Pongchaidecha A, Sirilun S, Chaiyasut C, Pratchayasakul W, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2018) Decreased microglial activation through gut–brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese–insulin resistant rats. J Neuroinflamm 15(1):11CrossRefGoogle Scholar
  22. 22.
    Wanchai K, Yasom S, Tunapong W, Chunchai T, Eaimworawuthikul S, Thiennimitr P, Chaiyasut C, Pongchaidecha A, Chatsudthipong V, Chattipakorn S, Chattipakorn N, Lungkaphin A (2018) Probiotic Lactobacillus paracasei HII01 protects rats against obese–insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clin Sci (Lond) 132(14):1545–1563CrossRefGoogle Scholar
  23. 23.
    Wanchai K, Yasom S, Tunapong W, Chunchai T, Thiennimitr P, Chaiyasut C, Pongchaidecha A, Chatsudthipong V, Chattipakorn S, Chattipakorn N, Lungkaphin A (2018) Prebiotic prevents impaired kidney and renal Oat3 functions in obese rats. J Endocrinol 237(1):29–42CrossRefGoogle Scholar
  24. 24.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412CrossRefGoogle Scholar
  25. 25.
    Peerajan S, Chaiyasut C, Sirilun S, Chaiyasut K, Kesika P, Sivamaruthi BS (2016) Enrichment of nutritional value of Phyllanthus emblica fruit juice using the probiotic bacterium, Lactobacillus paracasei HII01 mediated fermentation. Food Sci Technol 36:116–123CrossRefGoogle Scholar
  26. 26.
    Haffner SM, Miettinen H, Stern MP (1997) The homeostasis model in the San Antonio Heart Study. Diabetes Care 20(7):1087–1092CrossRefGoogle Scholar
  27. 27.
    Charoenphandhu N, Suntornsaratoon P, Sa-Nguanmoo P, Tanajak P, Teerapornpuntakit J, Aeimlapa R, Chattipakorn N, Chattipakorn S (2018) Dipeptidyl peptidase-4 inhibitor, vildagliptin, improves trabecular bone mineral density and microstructure in obese, insulin-resistant, pre-diabetic rats. Can J Diabetes 42:545–552CrossRefGoogle Scholar
  28. 28.
    Abbassy MA, Watari I, Soma K (2010) The effect of diabetes mellitus on rat mandibular bone formation and microarchitecture. Eur J Oral Sci 118(4):364–369CrossRefGoogle Scholar
  29. 29.
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17CrossRefGoogle Scholar
  30. 30.
    Charoenphandhu N, Suntornsaratoon P, Jongwattanapisan P, Wongdee K, Krishnamra N (2012) Enhanced trabecular bone resorption and microstructural bone changes in rats after removal of the cecum. Am J Physiol Endocrinol Metab 303(8):E1069–E1075CrossRefGoogle Scholar
  31. 31.
    Damanaki A, Memmert S, Nokhbehsaim M, Sanyal A, Gnad T, Pfeifer A, Deschner J (2018) Impact of obesity and aging on crestal alveolar bone height in mice. Ann Anat 218:227–235CrossRefGoogle Scholar
  32. 32.
    Montalvany-Antonucci CC, Zicker MC, Ferreira AVM, Macari S, Ramos-Junior ES, Gomez RS, Pereira TSF, Madeira MFM, Fukada SY, Andrade I Jr, Silva TA (2018) High-fat diet disrupts bone remodeling by inducing local and systemic alterations. J Nutr Biochem 59:93–103CrossRefGoogle Scholar
  33. 33.
    de Silva V, Lobato RV, Andrade EF, Orlando DR, Borges BDB, Zangeronimo MG, de Sousa RV, Pereira LJ (2017) Effects of beta-glucans ingestion on alveolar bone loss, intestinal morphology, systemic inflammatory profile, and pancreatic beta-cell function in rats with periodontitis and diabetes. Nutrients 9(9):1016CrossRefGoogle Scholar
  34. 34.
    Gatej SM, Marino V, Bright R, Fitzsimmons TR, Gully N, Zilm P, Gibson RJ, Edwards S, Bartold PM (2018) Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol 45(2):204–212CrossRefGoogle Scholar
  35. 35.
    Jia X, Jia L, Mo L, Yuan S, Zheng X, He J, Chen V, Guo Q, Zheng L, Yuan Q, Xu X, Zhou X (2018) Berberine ameliorates periodontal bone loss by regulating gut microbiota. J Dent Res.  https://doi.org/10.1177/0022034518797275 Google Scholar
  36. 36.
    Ricoldi MST, Furlaneto FAC, Oliveira LFF, Teixeira GC, Pischiotini JP, Moreira ALG, Ervolino E, de Oliveira MN, Bogsan CSB, Salvador SL, Messora MR (2017) Effects of the probiotic Bifidobacterium animalis subsp. lactis on the non-surgical treatment of periodontitis. A histomorphometric, microtomographic and immunohistochemical study in rats. PLoS One 12(6):e0179946CrossRefGoogle Scholar
  37. 37.
    Nagpal R, Kaur A (2011) Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol Food Nutr 50(1):63–68CrossRefGoogle Scholar
  38. 38.
    Li Z, Summanen PH, Komoriya T, Finegold SM (2015) In vitro study of the prebiotic xylooligosaccharide (XOS) on the growth of Bifidobacterium spp. and Lactobacillus spp. Int J Food Sci Nutr 66(8):919–922CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sathima Eaimworawuthikul
    • 1
    • 2
    • 3
  • Wannipa Tunapong
    • 3
  • Titikorn Chunchai
    • 3
  • Panan Suntornsaratoon
    • 5
    • 6
  • Narattaphol Charoenphandhu
    • 5
    • 6
    • 7
    • 8
  • Parameth Thiennimitr
    • 4
  • Nipon Chattipakorn
    • 3
  • Siriporn C. Chattipakorn
    • 2
    • 3
    Email author
  1. 1.Department of Orthodontics and Pediatric Dentistry, Faculty of DentistryChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Oral Biology and Diagnostic Sciences, Faculty of DentistryChiang Mai UniversityChiang MaiThailand
  3. 3.Neurophysiology Unit, Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  4. 4.Department of Microbiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  5. 5.Center of Calcium and Bone Research (COCAB), Faculty of ScienceMahidol UniversityBangkokThailand
  6. 6.Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
  7. 7.Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
  8. 8.The Academy of Science, The Royal Society of Thailand, DusitBangkokThailand

Personalised recommendations