Advertisement

Betaine-rich sugar beet molasses protects from homocysteine-induced reduction of survival in Caenorhabditis elegans

  • Alice Drobny
  • Hedda Meloh
  • Eike Wächtershäuser
  • Bernhard Hellmann
  • Andreas. S. Mueller
  • Jan Dirk van der Klis
  • Elena Fitzenberger
  • Uwe WenzelEmail author
Original Contribution
  • 88 Downloads

Abstract

Purpose

Homocysteine (Hcy) in humans represents a blood-borne biomarker which predicts the risk of age-related diseases and mortality. Using the nematode Caenorhabditis elegans, we tested whether feeding betaine-rich sugar beet molasses affects the survival under heat stress in the presence of Hcy, in spite of a gene loss in betaine–homocysteine methyltransferase.

Methods

Knockdown of the genes relevant for remethylation or transsulfuration of Hcy was achieved by RNA interference (RNAi). Survival assay was conducted under heat stress at 37 °C and Hcy levels were determined by enzyme-linked immunosorbent assay.

Results

Addition of 500 mg/l betaine-rich sugar beet molasses (SBM) prevented the survival reduction that was caused by exposure to Hcy at 37 °C. Although SBM was no longer capable of reducing Hcy levels under RNAi versus homologues for 5, 10-methylenetetrahydrofolate reductase or cystathionine-β-synthase, it still enabled the survival extension by SBM under exposure to Hcy. In contrast, RNAi for the small heat shock protein hsp-16.2 or the foxo transcription factor daf-16 both prevented the extension of survival by betaine-rich molasses in the presence of Hcy.

Conclusions

Our studies demonstrate that betaine-rich SBM is able to prevent survival reduction caused by Hcy in C. elegans in dependence on hsp-16.2 and daf-16 but independent of the remethylation pathway.

Keywords

Caenorhabditis elegans Betaine Homocysteine Heat shock proteins Daf-16 

Abbreviations

BHMT

betaine–homocysteine methyltransferase

CBS

cystathionine-ß-synthase

CGL

cystathionine-γ-lyase

ECL

enhanced chemiluminescence

GCL

γ-Glutamylcysteine ligase

GSH

reduced glutathione

GST

glutathione-S-transferase

Hcy

homocysteine

MTHFR

5,10-methylenetetrahydrofolate-reductase

GCS

γ-glutamylcysteinyl-synthetase

RNAi

RNA interference

SAM

S-adenosylmethionine

SBM

sugar beet molasses

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that no conflict of interest exists.

References

  1. 1.
    Boldyrev AA (2009) Molecular mechanisms of homocysteine toxicity. Biochemistry 74(6):589–598Google Scholar
  2. 2.
    Haynes WG (2002) Hyperhomocysteinemia, vascular function and atherosclerosis: effects of vitamins. Cardiovasc Drugs Ther 16(5):391–399Google Scholar
  3. 3.
    Seshadri S, Beiser A, Selhub J, Jacques PF et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346(7):476–483Google Scholar
  4. 4.
    Bonetti F, Brombo G, Zuliani G (2016) The relationship between hyperhomocysteinemia and neurodegeneration. Neurodegener Dis Manag 6(2):133–145.  https://doi.org/10.2217/nmt-2015-0008 Google Scholar
  5. 5.
    Barron E, Lara J, White M, Mathers JC (2015) Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PLoS One 10(6):e0127550.  https://doi.org/10.1371/journal.pone.0127550.eCollection2015 Google Scholar
  6. 6.
    Masud R, Baqai HZ (2017) The communal relation of MTHFR, MTR, ACE gene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease. Appl Physiol Nutr Metab 42(10):1009–1014.  https://doi.org/10.1139/apnm-2017-0030 Google Scholar
  7. 7.
    Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10.  https://doi.org/10.1016/j.ejmg.2014.10.004 Google Scholar
  8. 8.
    McRae MP (2013) Betaine supplementation decreases plasma homocysteine in healthy adult participants: a meta-analysis. J Chiropr Med 12(1):20–25.  https://doi.org/10.1016/j.jcm.2012.11.001 Google Scholar
  9. 9.
    Bito T, Watanabe F (2016) Biochemistry, function, and deficiency of vitamin B12 in Caenorhabditis elegans. Exp Biol Med (Maywood) 241(15):1663–1668.  https://doi.org/10.1177/1535370216662713 Google Scholar
  10. 10.
    Leiteritz A, Dilberger B, Wenzel U, Fitzenberger E (2018) Betaine reduces β-amyloid-induced paralysis through activation of cystathionine-β-synthase in an Alzheimer model of Caenorhabditis elegans. Genes Nutr 13:21.  https://doi.org/10.1186/s12263-018-0611-9 Google Scholar
  11. 11.
    Bartke A (2011) Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 366(1561):28–34.  https://doi.org/10.1098/rstb.2010.0281 Google Scholar
  12. 12.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94Google Scholar
  13. 13.
    Stiernagel T (2006) Maintenance of C. elegans. WormBook, ed. The C. elegans Research Community. Worm Book 11:1–11.  https://doi.org/10.1895/wormbook.1.101.1 Google Scholar
  14. 14.
    Lehner B, Tischler J, Fraser AG (2006) RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. Nat Protoc 1(3):1617–1620.  https://doi.org/10.1038/nprot.2006.245 Google Scholar
  15. 15.
    Timmons L, Court D, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–112Google Scholar
  16. 16.
    Gill MS, Olsen A, Sampayo JN, Lithgow GJ (2003) An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic Biol Med 35:558–565Google Scholar
  17. 17.
    Wierzbicki AS (2007) Homocysteine and cardiovascular disease: a review of the evidence. Diabetes Vasc Dis Res 4(2):143–150Google Scholar
  18. 18.
    Parnetti L, Bottiglieri T, Lowenthal D (1997) Role of homocysteine in age-related vascular and non-vascular diseases. Aging 9(4):241–257Google Scholar
  19. 19.
    McCully KS (2009) Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci 39(3):219–232Google Scholar
  20. 20.
    Parkhitko AA, Binari R, Zhang N, Asara JM et al (2016) Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. Genes Dev 30(12):1409–1422.  https://doi.org/10.1101/gad.282277.116 Google Scholar
  21. 21.
    Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80(3):539–549.  https://doi.org/10.1093/ajcn/80.3.539 Google Scholar
  22. 22.
    Finkelstein JD, Martin JJ (1984) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem 259(15):9508–9513Google Scholar
  23. 23.
    Gregory JF, DeRatt BN, Rios-Avila L, Ralat M, Stacpoole PW (2016) Vitamin B6 nutritional status and cellular availability of pyridoxal 5′-phosphate govern the function of the transsulfuration pathway’s canonical reactions and hydrogen sulfide production via side reactions. Biochimie 126:21–26.  https://doi.org/10.1016/j.biochi.2015.12.020 Google Scholar
  24. 24.
    Módis K, Coletta C, Asimakopoulou A, Szczesny B et al (2014) Effect of S-adenosyl-l-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro. Nitric Oxide 41:146–156.  https://doi.org/10.1016/j.niox.2014.03.001 Google Scholar
  25. 25.
    Shakeri M, Cottrell JJ, Wilkinson S, Ringuet M et al (2018) Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals (Basel) 25(8):E162.  https://doi.org/10.3390/ani8100162 Google Scholar
  26. 26.
    Giriş M, Doğru-Abbasoğlu S, Soluk-Tekkeşin M, Olgaç V, Uysal M (2018) Effect of betaine treatment on the regression of existing hepatic triglyceride accumulation and oxidative stress in rats fed on high fructose diet. Gen Physiol Biophys 37:563–570.  https://doi.org/10.4149/gpb_2018005 Google Scholar
  27. 27.
    Peden AS, Mac P, Fei YJ, Castro C et al (2013) Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans. Nat Neurosci 16(12):1794–1801.  https://doi.org/10.1038/nn.3575 Google Scholar
  28. 28.
    Urban N, Tsitsipatis D, Hausig F, Kreuzer K et al (2017) Non-linear impact of glutathione depletion on C. elegans life span and stress resistance. Redox Biol 11:502–515.  https://doi.org/10.1016/j.redox.2016.12.003 Google Scholar
  29. 29.
    Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37(8):894–898.  https://doi.org/10.1038/ng1608 Google Scholar
  30. 30.
    Murphy CT, McCarroll SA, Bargmann CI, Fraser A et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283.  https://doi.org/10.1038/nature01789 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alice Drobny
    • 1
  • Hedda Meloh
    • 1
  • Eike Wächtershäuser
    • 1
  • Bernhard Hellmann
    • 1
  • Andreas. S. Mueller
    • 2
  • Jan Dirk van der Klis
    • 2
  • Elena Fitzenberger
    • 1
  • Uwe Wenzel
    • 1
    Email author
  1. 1.Molecular Nutrition Research, Interdisciplinary Research CentreJustus-Liebig-University of GiessenGiessenGermany
  2. 2.Delacon Biotechnik GmbHSteyreggAustria

Personalised recommendations