Nutritional and health attributes of milk and milk imitations

  • Katharina E. Scholz-AhrensEmail author
  • Frank Ahrens
  • Christian A. Barth



Modern food technology allows designing products aiming to simulate and replace traditional food. In affluent societies there is a rising tendency to consume foods derived from plants including milk imitations or plant drinks based on cereals, nuts, legumes, oil seeds or other plant families. Herein we review production and composition of such drinks, summarize consumers’ motivations to change from milk to plant drinks and highlight nutritional and health implications of consuming plant drinks instead of milk, in particular if non-fortified and if consumed by infants, children, adolescents and the elderly.


Whereas the macronutrient concentrations of some plant drinks (soy) may approach in some cases (protein) that of cow’s milk, the nutritional quality of most plant drinks, e.g., the biological value of protein and the presence and amount of vitamins and essential minerals with high bioavailability does not. If cow’s milk is exchanged for non-fortified and non-supplemented plant drinks consumers may risk deficiencies of calcium, zinc, iodine, vitamins B2, B12, D, A, and indispensable amino acids, particularly in infants and toddlers who traditionally consume significant portions of milk. The vegetable nature, appearance and taste of such plant drinks may be appealing to adult consumers and be chosen for adding variety to the menu. However, in young children fed exclusively such plant drinks severe metabolic disturbances may occur.


Parents, dietitians, physicians and consumers should be aware of such potential risks, if non-fortified plant drinks are consumed instead of milk.


Cow’s milk Plant drinks Nutrient bioavailability Human nutrition Health risks 


Compliance with ethical standards

Conflict of interest

On behalf of all authors the corresponding author states that there is no conflict of interest.


  1. 1.
    Gerichtshof der Europäischen Union, Pressemitteilung Nr. 63 (2017) Urteil in der Rechtssache C-422/16 Verband Sozialer Wettbewerb e.V./ GmbH. Accessed 1 Mar 2019
  2. 2.
    Scholz-Ahrens KE (2003) Die Inhaltsstoffe der Milch und ihre Bedeutung für die Gesundheit. Med Welt 54:222–230Google Scholar
  3. 3.
    Miller GD, Jarvis JK, McBean LD (2004) Handbook of dairy foods and nutrition. National Dairy Council, CRC Press, New YorkGoogle Scholar
  4. 4.
    WHO (2002) Technical Report Series 935, Joint FAO/WHO/UNU expert consultation on protein and amino acid requirements in human nutrition, Geneva, SwitzerlandGoogle Scholar
  5. 5.
    Young VR, Pellett PL (1989) How to evaluate dietary protein. In: Barth CA, Schlimme E (eds) Milk proteins—nutritional, clinical, functional and technological aspects. Steinkopff Verlag Darmstadt Germany, New York, pp 7–36Google Scholar
  6. 6.
    Hoffman JR, Falvo MJ (2004) Protein—which is best? J Sports Sci Med 3(3):118–130 (eCollection 2004 Sep) PubMedPubMedCentralGoogle Scholar
  7. 7.
    Minocha S, Thomas T, Kurpad AV (2017) Dietary protein and the health–nutrition–agriculture connection in India. J Nutr 147(7):1243–1250CrossRefPubMedGoogle Scholar
  8. 8.
    Monckeberg F (1997) Prevention of malnutrition in Chile. In: Bendich A, Deckelbaum R (eds) Preventive nutrition, Humana Press Inc. Totowa, NJ, pp 505–522CrossRefGoogle Scholar
  9. 9.
    Quann EE, Fulgoni VL, Auestad N (2015) Consuming the daily recommended amounts of dairy products would reduce the prevalence of inadequate micronutrient intakes in the United States: diet modelling study based on NHANES 2007–2010. Nutr J 14(1):90CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Demmer E, Cifelli CJ, Houchins JA, Fulgoni VL (2017) The impact of doubling dairy or plant-based foods on consumption of nutrients of concern and proper bone health for adolescent females. Public Health Nutr 20(5):824–831CrossRefPubMedGoogle Scholar
  11. 11.
    Fulgoni IIIVL, Keast DR, Auestad N, Quann EE (2011) Nutrients from dairy foods are difficult to replace in diets of Americans: food pattern modelling and an analyses of the National Health and Nutrition Examination Survey 2003–2006. Nutr Res 31(10):759–765CrossRefPubMedGoogle Scholar
  12. 12.
    Thorning TK, Raben A, Tholstrup T, Soedamah-Muthu SS, Givens I, Astrup A (2016) Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res 60(1):32527CrossRefPubMedGoogle Scholar
  13. 13.
    Drouin-Chartier JP, Brassard D, Tessier-Grenier M, Côté JA, Labonté M, Desroches S, Lamarche B (2016) Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Adv Nutr 7(6):1026–1040CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Aune D, Norat T, Romundstad P, Vatten LJ (2013) Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr 98(4):1066–1083CrossRefPubMedGoogle Scholar
  15. 15.
    Gao D, Ning N, Wang C, Wang Y, Li Q, Meng Z, Liu Y, Li Q (2013) Dairy products consumption and risk of type 2 diabetes: systematic review and dose–response meta-analysis. PLoS One 8:e73965CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Soedamah-Muthu SS, Verberne LD, Ding EL, Engberink MF, Geleijnse JM (2012) Dairy consumption and incidence of hypertension: a dose–response meta-analysis of prospective cohort studies. Hypertension 60:1131–1137CrossRefPubMedGoogle Scholar
  17. 17.
    Hagemeister H, Scholz-Ahrens KE, Schulte-Coerne H, Agergaard N, Barth CA (1990) Plasma amino acids and cholesterol following consumption of dietary casein or soy protein in minipigs. J Nutr 120(11):1305–1311CrossRefPubMedGoogle Scholar
  18. 18.
    Scholz-Ahrens KE, Hagemeister H, Unshelm J, Barth CA (1990) Response of hormones modulating plasma cholesterol to dietary casein or soy protein in minipigs. J Nutr 120(11):1387–1392CrossRefPubMedGoogle Scholar
  19. 19.
    Taciak M, Swiech E, Pastuszewska B (2004) Nutritional value and physiological effects of industrial soybean products differing in protein solubility and trypsin inhibitor content. In: Muzquiz M, Hill GD, Cuadrado C et al (eds) Recent advantages of research in antinutritional factors in legume seeds and oilseeds, vol 110, Humana Press Inc. Totowa, NJ, pp 251–254Google Scholar
  20. 20.
    Meisel H (2005) Biochemical properties of peptides encrypted in bovine milk proteins. Curr Med Chem 12:1905–1919CrossRefPubMedGoogle Scholar
  21. 21.
    Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47(4):171–182CrossRefPubMedGoogle Scholar
  22. 22.
    Bösze Z (2008) Advances in experimental medicine and biology. In: Bösze Z (ed) Bioactive components of milk, vol 606. Springer Science + Business Media, LLC, New YorkCrossRefGoogle Scholar
  23. 23.
    Boutrou R, Gaudichon C, Dupont D et al (2013) Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr 97:1314–1323CrossRefPubMedGoogle Scholar
  24. 24.
    Fouillet H, Juillet B, Gaudichon C, Mariotti F, Tomé D, Bos C (2009) Absorption kinetics are a key factor regulating postprandial protein metabolism in response to qualitative and quantitative variations in protein intake. Am J Physiol Regul Integr Comp Physiol 297(6):R1691–R1705. (Epub 2009 Oct 7) CrossRefPubMedGoogle Scholar
  25. 25.
    Bruker MO, Jung M (2013) Der Murks mit der Milch. emu-Verlag, 11. Aufl. LahnsteinGoogle Scholar
  26. 26.
    Rollinger M (2004) Milch besser nicht. Jou-Verlag, TrierGoogle Scholar
  27. 27.
    Melnik BC, Schmitz G (2017) Milk’s role as an epigenetic regulator in health and disease. Diseases 5(12):1–45Google Scholar
  28. 28.
    Boeing H, Schwingshackl L (2016) Evidenzbasierte Analyse zum Einfluss der Ernährung in der Prävention von Krebskrankheiten, Diabetes mellitus Typ 2 und kardiovaskulären Krankheiten, Deutsche Gesellschaft für Ernährung, vol 13. DGE-Ernährungsbericht, BonnGoogle Scholar
  29. 29.
    Schwingshackl L, Schwedhelm C, Hoffmann G et al (2017) Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 105(6):1462–1473PubMedGoogle Scholar
  30. 30.
    Pfeuffer M, Watzl B (2018) Health evaluation of milk and milk products and their ingredients. Ernährungs Umschau 65(2):M70–M81Google Scholar
  31. 31.
    Mousan G, Kamat D (2016) Cow’s milk protein allergy. Clin Pediatr 55(11):1054–1063CrossRefGoogle Scholar
  32. 32.
    Heine RG, AlRefaee F, Bachina P, De Leon JC, Geng L, Gong S, Rogacion JM (2017) Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children–common misconceptions revisited. World Allergy Organ J 10(1):41CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Meier T (2015) Sustainable nutrition between the poles of health and environment. Potentials of altered diets and avoidable food losses. Ernährungs Umschau 62(2):22–33Google Scholar
  34. 34.
    Duin EC, Wagner T, Shima S, Prakash D, Cronin B, Yáñez-Ruiz DR, Kindermann M (2016) Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc Natl Acad Sci 113(22):6172–6177CrossRefPubMedGoogle Scholar
  35. 35.
    Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, Nahrowi (2018) Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital J Anim Sci 17(3):650–656CrossRefGoogle Scholar
  36. 36.
    Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90(6):2580–2595CrossRefPubMedGoogle Scholar
  37. 37.
    Mäkinen OE, Wanhalinna V, Zannini E et al (2016) Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Crit Rev Food Sci Nutr 56:339–349CrossRefPubMedGoogle Scholar
  38. 38.
    FAO/WHO/UNU Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition, 2002, Geneva, Switzerland, Report 935, p 151Google Scholar
  39. 39.
    Erbersdobler HF, Barth CA, Jahreis G (2017) Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernährungs Umschau 64(10):140–144Google Scholar
  40. 40.
    Mathai JK, Liu Y, Stein HH (2017) Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br J Nutr 117(4):490–499. CrossRefPubMedGoogle Scholar
  41. 41.
    Phillips SM (2017) Current concepts and unresolved questions in dietary protein requirements and supplements in adults. Front Nutr 4:13CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Food and Agriculture Organization of the United Nations (2013) Report of an FAO Expert Consultation. Dietary protein quality evaluation in human nutrition. human nutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf. Accessed June 2018
  43. 43.
    Messina M (2016) Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients 8(12):754. CrossRefPubMedCentralGoogle Scholar
  44. 44.
    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) (2015) Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones.
  45. 45.
    Giahi L, Mohammadmoradi S, Javidan A et al (2016) Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev 74(2):118–1301CrossRefPubMedGoogle Scholar
  46. 46.
    Portman MA, Navarro SL, Bruce ME et al (2016) Soy isoflavone intake is associated with risk of Kawasaki disease. Nutr Res 36(8):827–834CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kattan JD, Cocco RR, Järvinen KM (2011) Milk and soy allergy. Pediatr Clin N Am 58(2):407–426CrossRefGoogle Scholar
  48. 48.
    Sabaté J, Ang Y (2009) Nuts and health outcomes: new epidemiologic evidence. Am J Clin Nutr 89(5):1643S–1648SCrossRefPubMedGoogle Scholar
  49. 49.
    Graziani G, Postiglione R, Ritieni A et al (2001) Chemical and nutritional traits of almond milk. Accessed 1 Mar 2019
  50. 50.
    Rainakari A-I, Rita H, Putkonen T et al (2016) New dietary fibre content results for cereals in the Nordic countries using AOAC 2011.25 method. J Food Compos Anal 51:1–8CrossRefGoogle Scholar
  51. 51.
    EFSA Panel (2011) Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(6):2207CrossRefGoogle Scholar
  52. 52.
    House JD, Neufeld J, Leson G (2010) Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J Agric Food Chem 58:11801–11807CrossRefPubMedGoogle Scholar
  53. 53.
    Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140(1–2):65–72CrossRefGoogle Scholar
  54. 54.
    Boye J, Wijesinha-Bettoni R, Burlingame B (2012) Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr 108(S2):S183–S211CrossRefPubMedGoogle Scholar
  55. 55.
    Santoso U, Kobo K, Ota T et al (1996) Nutrient composition of kopyor coconuts (Cocos nucifera L.). Food Chem 51(2):299–304CrossRefGoogle Scholar
  56. 56.
    Seow CC, Gwee CN (1997) Coconut milk: chemistry and technology. Int J Food Sci Technol 32:189–201CrossRefGoogle Scholar
  57. 57.
    Souci SW, Fachmann W, Kraut H (2016) Die Zusammensetzung der Lebensmittel Nährwerttabellen. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  58. 58.
    Krauss RM, Eckel RH, Howard B et al (2000) AHA Dietary guidelines. Revision 2000: a statement for healthcare professionals from the nutrition Committee of the American Heart Association. Circulation 102:2284–2299CrossRefPubMedGoogle Scholar
  59. 59.
    Tang Y, Tsao R (2017) Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res 61(7):1600767CrossRefGoogle Scholar
  60. 60.
    Bernat N, Chafer M, Chiralt A et al (2015) Almond milk fermented with different potentially probiotic bacteria improves iron uptake by intestinal epithelial (Caco-2) cells. Int J Food Stud (IJFS) 4:49–60CrossRefGoogle Scholar
  61. 61.
    Sirirat D, Jelena P (2010) Bacterial inhibition and antioxidant activity of kefir produced from Thai jasmine rice milk. Biotechnology 9(3):332–337CrossRefGoogle Scholar
  62. 62.
    Marketsandmarkets (2017) Dairy alternatives market by type (soy, almond, coconut, rice, oat, hemp), formulation, application, and region—Global forecast to 2022. Accessed 29 Aug 2018
  63. 63.
    Patisault HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31(4):400–419CrossRefGoogle Scholar
  64. 64.
    United Soybean Board (2009) 16th Annual survey, consumer attitudes about nutrition, pp 1–12. Accessed 09 Dec 2017
  65. 65.
    The Food and Drug Administration (FDA) (2017) Food labeling: health claims; soy protein and coronary heart disease. Fed Regist 82(209):31Google Scholar
  66. 66.
    Van Vliet S, Burd NA, van Loon LJ (2015) The skeletal muscle anabolic response to plant-versus animal-based protein consumption1. J Nutr 145(9):1981–1991CrossRefPubMedGoogle Scholar
  67. 67.
    Scholz-Ahrens KE, Schrezenmeir J (2004) Ernährung und Osteoporoseprävention. Ernährungs-Umschau 51(01):22–26Google Scholar
  68. 68.
    Fairweather-Tait SJ, Johnson A, Eagles J et al (1989) Studies on calcium absorption from milk using a double-label stable isotope technique. Br J Nutr 62(2):379–388CrossRefPubMedGoogle Scholar
  69. 69.
    Weaver CM, Heaney RP (2006) Food sources, supplements, and bioavailability. In: Weaver CM, Heaney RP (eds) Calcium in human health. Nutrition and health. Humana Press, TotowaCrossRefGoogle Scholar
  70. 70.
    Greupner T, Schneider I, Hahn A (2017) Calcium bioavailability from mineral waters with different mineralization in comparison to milk and a supplement. J Am Coll Nutr 36(5):386–390CrossRefPubMedGoogle Scholar
  71. 71.
    Sheikh MS, Santa Ana CA, Nicar MJ et al (1987) Gastrointestinal absorption of calcium from milk and calcium salts. N Engl J Med 317(9):532–536CrossRefPubMedGoogle Scholar
  72. 72.
    Smith KT, Heaney RP, Flora L et al (1987) Calcium absorption from a new calcium delivery system (CCM). Calcif Tissue Int 41(6):351–352CrossRefPubMedGoogle Scholar
  73. 73.
    Scholz-Ahrens KE, Goralczyk R, Rambeck WA et al (1997) Effect of supplementation with milk or CCM enriched orange juice on bone metabolism in dependence on basic diet. In: Proceedings of the society of nutrition physiology (Germany), p 129Google Scholar
  74. 74.
    Sandberg AS (2002) Bioavailability of minerals in legumes. Br J Nutr 88(3):S281–S285CrossRefPubMedGoogle Scholar
  75. 75.
    Rimbach G, Pallauf J, Moehring J et al (2008) Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability: a literature review. Curr Top Nutraceutical Res 6(3):131–144Google Scholar
  76. 76.
    Ellis D, Lieb J (2015) Hyperoxaluria and genitourinary disorders in children ingesting almond milk products. J Pediatr 167(5):1155–1158CrossRefPubMedGoogle Scholar
  77. 77.
    Scholz-Ahrens KE (2016) Prebiotics, probiotics, synbiotics and foods with regard to bone metabolism. In: Nutritional influences on bone health. Springer, Cham, pp 153–167CrossRefGoogle Scholar
  78. 78.
    González-Vega JC, Walk CL, Stein HH (2015) Effects of microbial phytase on apparent and standardized total tract digestibility of calcium in calcium supplements fed to growing pigs. J Anim Sci 93(5):2255–2264. CrossRefPubMedGoogle Scholar
  79. 79.
    González-Vega JC, Walk CL, Liu Y et al (2014) The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility. Arch Anim Nutr 68(2):126–142CrossRefPubMedGoogle Scholar
  80. 80.
    Schanler RJ, Abrams SA, Garza C (1988) Bioavailability of calcium and phosphorus in human milk fortifiers and formula for very low birth weight infants. J Pediatr 113:95–100CrossRefPubMedGoogle Scholar
  81. 81.
    Heaney RP, Dowell MS, Rafferty K et al (2000) Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am J Clin Nutr 71:1166–1169CrossRefPubMedGoogle Scholar
  82. 82.
    Scholz-Ahrens KE (2011) Osteoporose—Prävention durch Ernährung. Praxishandbuch Funct Food 1109(51):1–44Google Scholar
  83. 83.
    Vitoria I (2017) The nutritional limitations of plant-based beverages in infancy and childhood. Nutr Hosp 34(5):1205–1214PubMedGoogle Scholar
  84. 84.
    Vanga SK, Raghavan V (2018) How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol 55(1):10–20CrossRefPubMedGoogle Scholar
  85. 85.
    Flachowsky G, Franke K, Meyer U et al (2014) Influencing factors on iodine content of cow milk. Eur J Nutr 53:351–365CrossRefPubMedGoogle Scholar
  86. 86.
    Ma W, He X, Braverman L (2016) Iodine content in milk alternatives. Thyroid 26(9):1308–1310CrossRefPubMedGoogle Scholar
  87. 87.
    Phillips SM, Tang JE, Moore DR (2009) The role of milk-and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr 28(4):343–354CrossRefPubMedGoogle Scholar
  88. 88.
    Scholz K, Pfeffer E (1978) Ein Beitrag zur Bewertung des Proteins in Krillmehl und Luzernemehlextrakt. Arch Anim Nutr 28(10):641–646Google Scholar
  89. 89.
    Berkey CS, Colditz GA, Rockett HR et al (2009) Dairy consumption and female height growth: prospective cohort study. Cancer Epidemiol Biomark 18(6):1881–1887CrossRefGoogle Scholar
  90. 90.
    Morency M-E, Birken CS, Lebovic G et al (2017) Association between noncow milk beverage consumption and childhood height. Am J Clin Nutr 106(2):597–602CrossRefPubMedGoogle Scholar
  91. 91.
    World Health Organization, Regional Office Europe, 12 steps to healthy eating (2019) A healthy lifestyle. Accessed 02 Feb 2019
  92. 92.
    Yu E, Malik VS, Hu FB (2018) Cardiovascular disease prevention by diet modification: JACC health promotion series. J Am Coll Cardiol 72(8):914–926CrossRefPubMedGoogle Scholar
  93. 93.
    Hjartåker A, Laake P, Lund E (2001) Childhood and adult milk consumption and risk of premenopausal breast cancer in a cohort of 48,844 women—the Norwegian women and cancer study. Int J Cancer 93(6):888–893CrossRefPubMedGoogle Scholar
  94. 94.
    Michels KB, Mohllajee AP, Roset-Bahmanyar E et al (2007) Diet and breast cancer: a review of the prospective observational studies. Cancer 109:2712–2749CrossRefPubMedGoogle Scholar
  95. 95.
    Van Der Pols JC, Bain C, Gunnell D et al (2007) Childhood dairy intake and adult cancer risk: 65-y follow-up of the Boyd Orr cohort. Am J Clin Nutr 86(6):1722–1729CrossRefPubMedGoogle Scholar
  96. 96.
    Murphy N, Norat T, Ferrari P et al (2013) Consumption of dairy products and colorectal cancer in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 8(9):e72715CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Brei C, Weigl J, Schrezenmeir J et al (2017) Milk and dairy products part 7: consumption of dairy products and cancer. Ernährungs Umschau 64(9):M518–M525Google Scholar
  98. 98.
    Aune D, Lau R, Chan DSM et al (2012) Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 23:37–45CrossRefPubMedGoogle Scholar
  99. 99.
    Aune D, Navarro Rosenblatt DA, Chan DS et al (2015) Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 101(1):87–117CrossRefPubMedGoogle Scholar
  100. 100.
    Lu W, Chen H, Niu Y et al (2016) Dairy products intake and cancer mortality risk: a meta-analysis of 11 population-based cohort studies. Nutr J 15(1):91CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    World Cancer Research Fund/American Institute for Cancer Research (2018) Diet, nutrition, physical activity and cancer: a global perspective. Continuous Update Project Expert Report 2018Google Scholar
  102. 102.
    Carvalho NF, Kenney RD, Carrington PH et al (2001) Severe nutritional deficiencies in toddlers resulting from health food milk alternatives. Pediatrics 107:E46 (1–7) CrossRefPubMedGoogle Scholar
  103. 103.
    Liu T, Howard R, Mancini A et al (2001) Kwashiorkor in the United States, fad diets, perceived and true milk allergy, and nutritional ignorance. Arch Dermatol 137:630–636PubMedGoogle Scholar
  104. 104.
    Black RE, Williams SM, Jones IE et al (2002) Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr 76:675–680CrossRefPubMedGoogle Scholar
  105. 105.
    Le Louer B, Lemale J, Garcette K et al (2014) Severe nutritional deficiencies in young infants with inappropriate plant milk consumption. Arch Pediatr 21(5):483–488CrossRefPubMedGoogle Scholar
  106. 106.
    Gerrard JW, MacKenzie JW, Goluboff N et al (1973) Cow’s milk allergy: prevalence and manifestations in an unselected series of newborns. Acta Paediatr Scand Suppl 234:1–21PubMedGoogle Scholar
  107. 107.
    Mandalari G, Mackie A (2018) Almond allergy: an overview on prevalence, thresholds, regulations and allergen detection. Nutrients 10(11):1706CrossRefPubMedCentralGoogle Scholar
  108. 108.
    Ahn KM, Han YS, Nam SY et al (2003) Prevalence of soy protein hypersensitivity in cow’s milk protein-sensitive children in Korea. J Korean Med Sci 18(4):473–477CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Anil M, Demirakca S, Dötsch J et al (1996) Hypocalcemia–hyperphosphatemia due to soy milk feeding in early infancy. Klin Paediatr 208(6):323–326CrossRefGoogle Scholar
  110. 110.
    Straub S, Huckel D, Borte M et al (2006) Hypocalcaemic tetany through feeding with almond milk. Internistische Praxis 46(4):747–752Google Scholar
  111. 111.
    Katz KA, Mahlberg MJ, Honig PJ et al (2005) Rice nightmare: Kwashiorkor in 2 Philadelphia-area infants fed rice dream beverage. J Am Acad Dermatol 52(5 Suppl 1):S69–S72CrossRefPubMedGoogle Scholar
  112. 112.
    Vitoria I (2017) The nutritional limitations of plant-based beverages in infancy and childhood. Nutr Hosp 24 34(5):1205–1214PubMedGoogle Scholar
  113. 113.
    Vitoria I, López B, Gómez J, Torres C, Guasp M, Calvo I, Dalmau J (2016) Improper use of a plant-based vitamin C-deficient beverage causes scurvy in an infant. Pediatrics 137(2):e20152781Google Scholar
  114. 114.
    Dwyer TJ, Dietz WH, Hass GH et al (1979) Risk of nutritional rickets among vegetarian children. Am J Dis Child 133:134–140PubMedGoogle Scholar
  115. 115.
    Van Staveren WA, Dhuyvetter JH, Bons A et al (1985) Food consumption and height/weight status of Dutch pre-school children on alternative diets. J Am Diet Assoc 85:1579–1584PubMedGoogle Scholar
  116. 116.
    Doron D, Hershkop K, Granot E (2001) Nutritional deficits resulting from an almond-based infant diet. Clin Nutr 20(3):259–261CrossRefPubMedGoogle Scholar
  117. 117.
    Agostoni C, Turck D (2011) Is cow’s milk harmful to a child’s health? J Pediatr Gastroenterol Nutr 53(6):594–600PubMedGoogle Scholar
  118. 118.
    Fewtrell M, Bronsky J, Campoy C et al (2017) Complementary feeding: a position paper by the European society for paediatric gastroenterology, hepatology, and nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr 64(1):119–132CrossRefPubMedGoogle Scholar
  119. 119.
    Ratzesberger P (2017) Prozess—Tod nach Mangelernährung. Süddeutsche Zeitung 14. Juni 2017.
  120. 120.
    Leung AM, LaMar A, He X et al (2011) Iodine status and thyroid function of boston-area vegetarians and vegans. J Clin Endocrinol Metab 96:E1303–E1307CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Dietitians of Canada and the Canadian Pediatric Society stated (2017) Accessed 1 Mar 2019
  122. 122.
    Golden NH, Abrams SA (2014) Optimizing bone health in children and adolescents. Pediatrics peds-2014Google Scholar
  123. 123.
    Schürmann S, Kersting M, Alexy U (2017) Vegetarian diets in children: a systematic review. Eur J Nutr 56(5):1797–1817. (Epub 2017 Mar 15) CrossRefPubMedGoogle Scholar
  124. 124.
    Dagnelie PC, van Dusseldorp M, van Staveren WA, Hautvast JG (1994) Effects of macrobiotic diets on linear growth in infants and children until 10 years of age. Eur J Clin Nutr 48(Suppl 1):S103–S111 (discussion S111–2) PubMedGoogle Scholar
  125. 125.
    Richter M, Boeing H, Grünewald-Funk D, Heseker H, Kroke A, Leschik-Bonnet E, Watzl B, for the German Nutrition Society (DGE) (2016) Vegan diet. Position of the German Nutrition Society (DGE). Ernährungs Umschau 63(04):92–102Google Scholar
  126. 126.
    Ambroszkiewicz J, Chełchowska M, Szamotulska K et al (2018) Bone status and adipokine levels in children on vegetarian and omnivorous diets. Clin Nutr. (Epub ahead of print) CrossRefPubMedGoogle Scholar
  127. 127.
    Lau EMC, Kwok T, Woo J, Ho SC (1998) Bone mineral density in Chinese elderly female vegetarians, vegans, lacto-vegetarians and omnivores. Eur J Clin Nutr 52(1):60CrossRefPubMedGoogle Scholar
  128. 128.
    Tong TY, Key TJ, Sobiecki JG, Bradbury KE (2018) Anthropometric and physiologic characteristics in white and British Indian vegetarians and non-vegetarians in the UK Biobank. Am J Clin Nutr 107(6):909–920. CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Ho-Pham LT, Vu BQ, Lai TQ, Nguyen ND, Nguyen TV (2012) Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans. Eur J Clin Nutr 66(1):75–82. (Epub 2011 Aug 3) CrossRefPubMedGoogle Scholar
  130. 130.
    Sathyapalan T, Manuchehri AM, Thatcher NJ et al (2011) The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: a randomized, double-blind, crossover study. J Clin Endocrinol Metab 96(5):1442–1449. (Epub 2011 Feb 16) CrossRefPubMedGoogle Scholar
  131. 131.
    Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110(Suppl 3):349–353CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Dhonukshe-Rutten RA, Pluijm SM, de Groot LC, Lips P, Smit JH, van Staveren WA (2005) Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res 20(6):921–929CrossRefPubMedGoogle Scholar
  133. 133.
    Baik HW, Russell RM (1999) Vitamin B12 deficiency in the elderly. Annu Rev Nutr 19(1):357–377CrossRefPubMedGoogle Scholar
  134. 134.
    Lindenbaum J, Rosenberg IH, Wilson PW, Stabler SP, Allen RH (1994) Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 60(1):2–11CrossRefPubMedGoogle Scholar
  135. 135.
    Andrès E, Affenberge S, Vinzio S, Kurtz JE, Noel E, Kaltenbach G, Blicklé JF (2005) Food-cobalamin malabsorption in elderly patients: clinical manifestations and treatment. Am J Med 118(10):1154–1159CrossRefPubMedGoogle Scholar
  136. 136.
    Referenzwerte für die Nährstoffzufuhr der Deutschen-, Österreichischen-und Schweizerischen Gesellschaft für Ernährung (2008) Umschau VerlagGoogle Scholar
  137. 137.
    European food safety authority (EFSA)(2018) Dietary reference values for nutrients; Summary report. Accessed 02 Feb 2019
  138. 138.
    Watanabe F (2007) Vitamin B 12 sources and bioavailability. Exp Biol Med 232:1266–1274CrossRefGoogle Scholar
  139. 139.
    van Staveren WA, Steijns JM, de Groot LC (2008) Dairy products as essential contributors of (micro-) nutrients in reference food patterns: an outline for elderly people. J Am Coll Nutr 27(6):747S–754SCrossRefPubMedGoogle Scholar
  140. 140.
    Elorinne A-L, Alfthan G, Erlund I, Kivimäki H, Paju A, Salminen I et al (2016) Food and nutrient intake and nutritional status of finnish vegans and non-vegetarians. PLoS One 11(2):e0148235. CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Waldmann A, Koschizke JW, Leitzmann C, Hahn A (2004) Dietary iron intake and iron status of German female vegans: results of the German vegan study. Ann Nutr Metab 48(2):103–108 (Epub 2004 Feb 25) CrossRefPubMedGoogle Scholar
  142. 142.
    Hallberg L, Rossander-Hulthen L, Brune M, Gleerup A (1993) Inhibition of haem-iron absorption in man by calcium. Br J Nutr 69:533–540CrossRefPubMedGoogle Scholar
  143. 143.
    Kristensen MB, Hels O, Morberg C, Marving J, Bügel S, Tetens I (2005) Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content. Br J Nutr 94(1):78–83CrossRefGoogle Scholar
  144. 144.
    Hallberg L, Brune M, Rossander-Hulthen L (1987) Is there a physiological role of vitamin C in iron absorption? Ann N Y Acad Sci 498(1):324–332CrossRefPubMedGoogle Scholar
  145. 145.
    Scholz-Ahrens KE, Schaafsma G, Kip P, Elbers F, Boeing H, Schrezenmeir J (2004) Iron-fortified milk can improve iron status in young women with low iron stores. Milk Sci Int 59(5/6):253–257Google Scholar
  146. 146.
    Van Soest PJ (1994) The nutritional ecology of the ruminant, 2nd edn. Comstock Publishing Associates/ Division of Cornell University Press, Ithaca, p 5Google Scholar
  147. 147.
    Singhal S, Baker RD, Baker SS (2017) A comparison of the nutritional value of cow’s milk and nondairy beverages. J Pediatr Gastroenterol Nutr 64(1):799–805CrossRefPubMedGoogle Scholar
  148. 148.
    Hu Y, Li M, Piao J, Yang X (2010) Nutritional evaluation of genetically modified rice expressing human lactoferrin gene. J Cereal Sci 52(3):350–355CrossRefGoogle Scholar
  149. 149.
    Rutherfurd SM, Fanning AC, Miller BJ, Moughan PJ (2014) Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats-3. J Nutr 145(2):372–379CrossRefPubMedGoogle Scholar
  150. 150.
    Schmid A, Walther B (2013) Natural vitamin D content in animal products. Adv Nutr 4(4):453–462CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Calvo MS, Whiting SJ, Barton CN (2004) Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr 80(6):1710S–1716SCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Sicherheit und Qualität bei Milch und FischMax Rubner-InstitutKielGermany
  2. 2.Ahrhoff GmbHRellingenGermany
  3. 3.Universität Potsdam, Institut für ErnährungswissenschaftNuthetalGermany

Personalised recommendations