Advertisement

Dietary intake of fish, n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: a systematic review and meta-analysis of observational studies

  • Hadis Mozaffari
  • Elnaz Daneshzad
  • Bagher Larijani
  • Nick Bellissimo
  • Leila AzadbakhtEmail author
Review

Abstract

Purpose

Fish consumption and dietary intake of n-3 polyunsaturated acids (PUFAs) may be associated with inflammatory bowel disease (IBD). We aimed to conduct a systematic review and summarize published articles on the association between fish consumption and dietary intake of n-3 PUFAs with the risk of IBD.

Methods

PubMed, Scopus, and Web of Science databases were used to conduct a comprehensive search and identify eligible literature published prior to January 2019. Fixed-effects model or random-effects models (DerSimonian–Laird method) were applied to pool the effect sizes. Cochrane Q test was used to trace the potential source of heterogeneity across studies.

Results

12 studies (5 prospective and 7 case–control) were included in the systematic review, which ten of them were eligible for inclusion in the meta-analysis. Studies were included a total sample size of 282610 participants which 2002 of them were cases of IBD [1061 Crohn’s disease (CD) and 937 ulcerative colitis (UC)]. A negative association was found between fish consumption and the incidence of CD (pooled effect size: 0.54, 95%CI: 0.31–0.96, P = 0.03). There was no relationship between total dietary n-3 PUFAs intake and IBD (pooled effect size: 1.17, 95%CI: 0.80–1.72, P = 0.41). A significant inverse association was observed between dietary long-chain n-3 PUFAs and the risk of UC (pooled effect size: 0.75, 95%CI: 0.57–0.98, P = 0.03). Moreover, no association was found between α-Linolenic acid (ALA) and IBD (pooled effect size: 1.17, 95%CI: 0.63–2.17, P = 0.62).

Conclusions

Findings showed a negative association between fish consumption and the risk of CD. Moreover, there was a significant inverse association between dietary long-chain n-3 PUFAs and the risk of UC.

Keywords

Fish Omega-3 Inflammatory bowel disease Meta-analysis 

Notes

Acknowledgements

This study was supported by National Institute for Medical Research Development (Grant and Ethics Number: 977288).

Author contributions

LA and HM designed the study. Searching processes, data extraction, statistical analysis, and manuscript drafting performed by HM and reviewed by ED, BL, NB, and LA. LA supervised all the study processes and checked the search strategy processing and statistical analysis. The final version of the manuscript was approved by all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

394_2019_1901_MOESM1_ESM.docx (646 kb)
Supplementary material 1 (DOCX 645 KB)

References

  1. 1.
    Molodecky NA, Soon S, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142(1):46–54.e42CrossRefGoogle Scholar
  2. 2.
    Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8(6):458PubMedCrossRefGoogle Scholar
  3. 3.
    Jantchou P, Monnet E, Carbonnel F (2006) Environmental risk factors in Crohn’s disease and ulcerative colitis (excluding tobacco and appendicectomy). Gastroenterol Clin Biol 30(6–7):859–867PubMedCrossRefGoogle Scholar
  4. 4.
    Cho JH, Abraham C (2007) Inflammatory bowel disease genetics: Nod2. Annu Rev Med 58:401–416PubMedCrossRefGoogle Scholar
  5. 5.
    Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD, Wu GD (2015) Diet in the pathogenesis and treatment of inflammatory Bowelá diseases. Gastroenterology 148(6):1087–1106PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cashman KD, Shanahan F (2003) Is nutrition an aetiological factor for inflammatory bowel disease? Eur J Gastroenterol Hepatol 15(6):607–613PubMedCrossRefGoogle Scholar
  7. 7.
    Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51(6):637–663PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mouli VP, Ananthakrishnan AN (2014) vitamin D and inflammatory bowel diseases. Aliment Pharmacol Ther 39(2):125–136PubMedCrossRefGoogle Scholar
  9. 9.
    Oldenburg B, Koningsberger J, Van Berge Henegouwen G, Van Asbeck B, Marx J (2001) Iron and inflammatory bowel disease. Aliment Pharmacol Ther 15(4):429–438PubMedCrossRefGoogle Scholar
  10. 10.
    Mori TA, Beilin LJ (2004) Omega-3 fatty acids and inflammation. Curr Atheroscler Rep 6(6):461–467PubMedCrossRefGoogle Scholar
  11. 11.
    Abubakar I, Myhill DJ, Hart AR, Lake IR, Harvey I, Rhodes JM, Robinson R, Lobo AJ, Probert CS, Hunter PR (2007) A case-control study of drinking water and dairy products in Crohn’s disease—further investigation of the possible role of Mycobacterium avium paratuberculosis. Am J Epidemiol 165(7):776–783PubMedCrossRefGoogle Scholar
  12. 12.
    Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Fuchs CS, Willett WC, Richter JM, Chan AT (2014) Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 63(5):776–784PubMedCrossRefGoogle Scholar
  13. 13.
    Ananthakrishnan AN, Khalili H, Song M, Higuchi LM, Richter JM, Nimptsch K, Wu K, Chan AT (2015) High school diet and risk of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 21(10):2311–2319PubMedPubMedCentralGoogle Scholar
  14. 14.
    Chan S, Luben R, Olsen A, Tjonneland A, Kaaks R, Lindgren S, Grip O, Bergmann M, Boeing H, Hallmans G (2014) Association between high dietary intake of the n – 3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn’s disease. Aliment Pharmacol Ther 39(8):834–842PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Investigators IiES (2009) Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case–control study within a European prospective cohort study. Gut 58(12):1606–1611CrossRefGoogle Scholar
  16. 16.
    Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault M-C, Carbonnel F (2010) Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol 105(10):2195PubMedCrossRefGoogle Scholar
  17. 17.
    Maconi G, Ardizzone S, Cucino C, Bezzio C, Russo AG, Porro GB (2010) Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: a case-control study. World J Gastroenterol WJG 16(34):4297PubMedCrossRefGoogle Scholar
  18. 18.
    Pugazhendhi S, Sahu MK, Subramanian V, Pulimood A, Ramakrishna BS (2011) Environmental factors associated with Crohn’s disease in India. Indian J Gastroenterol 30(6):264–269PubMedCrossRefGoogle Scholar
  19. 19.
    Rashvand S, Somi MH, Rashidkhani B, Hekmatdoost A (2015) Dietary protein intakes and risk of ulcerative colitis. Med J Islam Repub Iran 29:253PubMedPubMedCentralGoogle Scholar
  20. 20.
    Rashvand S, Somi MH, Rashidkhani B, Hekmatdoost A (2015) Dietary fatty acid intakes are related to the risk of ulcerative colitis: a case–control study. Int J Colorectal Dis 30(9):1255–1260PubMedCrossRefGoogle Scholar
  21. 21.
    Reif S, Klein I, Lubin F, Farbstein M, Hallak A, Gilat T (1997) Pre-illness dietary factors in inflammatory bowel disease. Gut 40(6):754–760PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sakamoto N, Kono S, Wakai K, Fukuda Y, Satomi M, Shimoyama T, Inaba Y, Miyake Y, Sasaki S, Okamoto K (2005) Dietary risk factors for inflammatory bowel disease A multicenter case–control Study in Japan. Inflamm Bowel Dis 11(2):154–163PubMedCrossRefGoogle Scholar
  23. 23.
    Turner D, Shah PS, Steinhart AH, Zlotkin S, Griffiths AM (2011) Maintenance of remission in inflammatory bowel disease using omega-3 fatty acids (fish oil): a systematic review and meta-analyses. Inflamm Bowel Dis 17(1):336–345PubMedCrossRefGoogle Scholar
  24. 24.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341CrossRefGoogle Scholar
  25. 25.
    Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, Tugwell P (2016) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa (ON): Ottawa Hospital Research Institute, 2009. (Available in March)Google Scholar
  26. 26.
    Mozaffari H, Djafarian K, Mofrad M, Shab-Bidar S (2018) Dietary fat, saturated fatty acid, and monounsaturated fatty acid intakes and risk of bone fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int 2018:1–13Google Scholar
  27. 27.
    Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. Wiley, HobokenGoogle Scholar
  28. 28.
    Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Marlow G, Ellett S, Ferguson IR, Zhu S, Karunasinghe N, Jesuthasan AC, Han DY, Fraser AG, Ferguson LR (2013) Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum Genomics 7(1):24PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Amre DK, D’souza S, Morgan K, Seidman G, Lambrette P, Grimard G, Israel D, Mack D, Ghadirian P, Deslandres C (2007) Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn’s disease in children. Am J Gastroenterol 102(9):2016PubMedCrossRefGoogle Scholar
  31. 31.
    D’souza S, Levy E, Mack D, Israel D, Lambrette P, Ghadirian P, Deslandres C, Morgan K, Seidman EG, Amre DK (2007) Dietary patterns and risk for Crohn’s disease in children. Inflamm Bowel Dis 14(3):367–373CrossRefGoogle Scholar
  32. 32.
    Tasson L, Canova C, Vettorato MG, Savarino E, Zanotti R (2017) Influence of diet on the course of inflammatory bowel disease. Dig Dis Sci 62(8):2087–2094PubMedCrossRefGoogle Scholar
  33. 33.
    Andersen V, Olsen A, Carbonnel F, Tjønneland A, Vogel U (2012) Diet and risk of inflammatory bowel disease. Dig Dis Sci 44(3):185–194Google Scholar
  34. 34.
    Gentschew L, Ferguson LR (2012) Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Mol Nutr Food Res 56(4):524–535PubMedCrossRefGoogle Scholar
  35. 35.
    Benno Y, Suzuki K, Suzuki K, Narisawa K, Bruce WR, Mitsuoka T (1986) Comparison of the fecal microflora in rural Japanese and urban Canadians. Microbiol Immunol 30(6):521–532PubMedCrossRefGoogle Scholar
  36. 36.
    Benno Y, Endo K, Miyoshi H, Okuda T, Koishi H, Mitsuoka T (1989) Effect of rice fiber on human fecal microflora. Microbiol Immunol 33(5):435–440PubMedCrossRefGoogle Scholar
  37. 37.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603PubMedCrossRefGoogle Scholar
  38. 38.
    Hisamatsu T, Suzuki M, Reinecker H-C, Nadeau WJ, McCormick BA, Podolsky DK (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124(4):993–1000PubMedCrossRefGoogle Scholar
  39. 39.
    Flores A, Burstein E, Cipher DJ, Feagins LA (2015) Obesity in inflammatory bowel disease: a marker of less severe disease. Dig Dis Sci 60(8):2436–2445PubMedCrossRefGoogle Scholar
  40. 40.
    Aljada A, Mohanty P, Ghanim H, Abdo T, Tripathy D, Chaudhuri A, Dandona P (2004) Increase in intranuclear nuclear factor κB and decrease in inhibitor κB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am J Clin Nutr 79(4):682–690PubMedCrossRefGoogle Scholar
  41. 41.
    Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL (2010) Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 16(1):137–151PubMedCrossRefGoogle Scholar
  42. 42.
    Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25(1):4–7PubMedCrossRefGoogle Scholar
  43. 43.
    Walters WA, Xu Z, Knight R (2014) Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 588(22):4223–4233PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Miller LG, Goldstein G, Murphy M, Ginns LC (1982) Reversible alterations in immunoregulatory T cells in smoking: analysis by monoclonal antibodies and flow cytometry. Chest 82(5):526–529PubMedCrossRefGoogle Scholar
  45. 45.
    Srivastava E, Russell M, Feyerabend C, Rhodes J (1990) Effect of ulcerative colitis and smoking on rectal blood flow. Gut 31(9):1021–1024PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Thomas GA, Rhodes J, Green JT, Richardson C (2000) Role of smoking in inflammatory bowel disease: implications for therapy. Postgrad Med J 76(895):273–279PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Prytz H, Benoni C, Tagesson C (1989) Does smoking tighten the gut? Scand J Gastroenterol 24(9):1084–1088PubMedCrossRefGoogle Scholar
  48. 48.
    John S, Luben R, Shrestha SS, Welch A, Khaw K-T, Hart AR (2010) Dietary n-3 polyunsaturated fatty acids and the aetiology of ulcerative colitis: a UK prospective cohort study. Eur J Gastroenterol Hepatol 22(5):602–606PubMedCrossRefGoogle Scholar
  49. 49.
    Hekmatdoost A, Wu X, Morampudi V, Innis SM, Jacobson K (2013) Dietary oils modify the host immune response and colonic tissue damage following Citrobacter rodentium infection in mice. Am J Physiol Gastrointest Liver Physiol 304(10):G917–G928PubMedCrossRefGoogle Scholar
  50. 50.
    Hekmatdoost A, Mirshafiey A, Feizabadi MM, Djazayeri A (2009) Polyunsaturated fatty acids, microflora and colitis. Ann Nutr Metabol 55(4):325–325CrossRefGoogle Scholar
  51. 51.
    Hekmatdoost A, Feizabadi MM, Djazayery A, Mirshafiey A, Eshraghian MR, Yeganeh SM, Sedaghat R, Jacobson K (2008) The effect of dietary oils on cecal microflora in experimental colitis in mice. Indian J Gastroenterol 27(5):186–189PubMedGoogle Scholar
  52. 52.
    Nieto N, Torres MI, Ríos A, Gil A (2002) Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J Nutr 132(1):11–19PubMedCrossRefGoogle Scholar
  53. 53.
    Uchiyama K, Nakamura M, Odahara S, Koido S, Katahira K, Shiraishi H, Ohkusa T, Fujise K, Tajiri H (2010) N-3 polyunsaturated fatty acid diet therapy for patients with inflammatory bowel disease. Inflamm Bowel Dis 16(10):1696–1707PubMedCrossRefGoogle Scholar
  54. 54.
    Collie-Duguid E, Wahle K (1996) Inhibitory effect of fish oil N-3 polyunsaturated fatty acids on the expression of endothelial cell adhesion molecules. Biochem Biophys Res Commun 220(3):969–974PubMedCrossRefGoogle Scholar
  55. 55.
    Shores DR, Binion DG, Freeman BA, Baker PR (2010) New insights into the role of fatty acids in the pathogenesis and resolution of inflammatory bowel disease. Inflamm Bowel Dis 17(10):2192–2204PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Esteve-Comas M, Nunez M, Fernández-Bañares F, Abad-Lacruz A, Gil A, Cabre E, Gonzalez-Huix F, Bertran X, Gassull M (1993) Abnormal plasma polyunsaturated fatty acid pattern in non-active inflammatory bowel disease. Gut 34(10):1370–1373PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kawakami Y, Okada H, Murakami Y, Kawakami T, Ueda Y, Kunii D, Sakamoto Y, Shiratori Y, Okita M (2007) Dietary intake, neutrophil fatty acid profile, serum antioxidant vitamins and oxygen radical absorbance capacity in patients with ulcerative colitis. J Nutr Sci Vitaminol 53(2):153–159PubMedCrossRefGoogle Scholar
  58. 58.
    Nishida T, Miwa H, Shigematsu A, Yamamoto M, Iida M, Fujishima M (1987) Increased arachidonic acid composition of phospholipids in colonic mucosa from patients with active ulcerative colitis. Gut 28(8):1002–1007PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Marion-Letellier R, Savoye G, Beck PL, Panaccione R, Ghosh S (2013) Polyunsaturated fatty acids in inflammatory bowel diseases: a reappraisal of effects and therapeutic approaches. Inflamm Bowel Dis 19(3):650–661PubMedCrossRefGoogle Scholar
  60. 60.
    Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH (2005) Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol 174(9):5390–5397PubMedCrossRefGoogle Scholar
  61. 61.
    Novak TE, Babcock TA, Jho DH, Helton WS, Espat NJ (2003) NF-κB inhibition by ω-3 fatty acids modulates LPS-stimulated macrophage TNF-α transcription. Am J Physiol Lung Cell Mol Physiol 284(1):L84–L89PubMedCrossRefGoogle Scholar
  62. 62.
    Hughes R, Magee E, Bingham S (2000) Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intestinal Microbiol 1(2):51–58Google Scholar
  63. 63.
    Roediger W (2008) Nitric oxide from dysbiotic bacterial respiration of nitrate in the pathogenesis and as a target for therapy of ulcerative colitis. Aliment Pharmacol Ther 27(7):531–541PubMedCrossRefGoogle Scholar
  64. 64.
    Weylandt KH, Chiu C-Y, Gomolka B, Waechter SF, Wiedenmann B (2012) Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat 97(3–4):73–82PubMedCrossRefGoogle Scholar
  65. 65.
    Depner CM, Philbrick KA, Jump DB (2013) Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr–/– mouse model of western diet-induced nonalcoholic steatohepatitis1–3. J Nutr 143(3):315–323PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Goldman D, Pickett W, Goetzl E (1983) Human neutrophil chemotactic and degranulating activities of leukotriene B5 (LTB5) derived from eicosapentaenoic acid. Biochem Biophys Res Commun 117(1):282–288PubMedCrossRefGoogle Scholar
  67. 67.
    Rodríguez-Lagunas MJ, Ferrer R, Moreno JJ (2013) Effect of eicosapentaenoic acid-derived prostaglandin E3 on intestinal epithelial barrier function. Prostaglandins Leukot Essent Fatty Acids 88(5):339–345PubMedCrossRefGoogle Scholar
  68. 68.
    Patterson E, Wall R, Fitzgerald G, Ross R, Stanton C (2012) Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metabol 2012:539426CrossRefGoogle Scholar
  69. 69.
    Turner D, Steinhart AH, Griffiths AM (2007) Omega 3 fatty acids (fish oil) for maintenance of remission in ulcerative colitis. Cochrane Database of Syst Rev 18(3):CD006443Google Scholar
  70. 70.
    Scaioli E, Liverani E, Belluzzi A (2017) The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: a comprehensive review and future therapeutic perspectives. Int J Mol Sci 18(12):2619PubMedCentralCrossRefGoogle Scholar
  71. 71.
    Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR (2011) Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93(5):950–962PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Meyer BJ, Mann NJ, Lewis JL, Milligan GC, Sinclair AJ, Howe PR (2003) Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 38(4):391–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hadis Mozaffari
    • 1
  • Elnaz Daneshzad
    • 1
  • Bagher Larijani
    • 2
  • Nick Bellissimo
    • 3
  • Leila Azadbakht
    • 1
    • 4
    Email author
  1. 1.Department of Community Nutrition, School of Nutritional Science and DieteticsTehran University of Medical SciencesTehranIran
  2. 2.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  3. 3.School of NutritionRyerson UniversityTorontoCanada
  4. 4.Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations