Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats

  • Nelson Andrade
  • Sara Andrade
  • Claúdia Silva
  • Ilda Rodrigues
  • Luísa Guardão
  • João T. Guimarães
  • Elisa Keating
  • Fátima MartelEmail author
Original Contribution



Metabolic syndrome (MS) is a major public health issue worldwide and fructose consumption has been associated with MS development. Recently, we showed that the dietary polyphenol chrysin is an effective inhibitor of fructose uptake by human intestinal epithelial cells. Therefore, our aim was to investigate if chrysin interferes with the development of MS induced by fructose in an animal model.


Adult male Sprague–Dawley rats (220–310 g) were randomly divided into four groups: (A) tap water (control), (B) tap water and a daily dose of chrysin (100 mg/kg) by oral administration (chrysin) (C) 10% fructose in tap water (fructose), and (D) 10% fructose in tap water and a daily dose of chrysin (100 mg/kg) by oral administration (fructose + chrysin). All groups were fed ad libitum with standard laboratory chow diet and dietary manipulation lasted 18 weeks.


Fructose-feeding for 18 weeks induced an increase in serum triacylglycerols, insulin and angiotensin II levels and in hepatic fibrosis and these changes did not occur in fructose + chrysin rats. Moreover, the increase in both systolic and diastolic blood pressure which was found in fructose-fed animals from week 14th onwards was not observed in fructose + chrysin animals. In contrast, the increase in energy consumption, liver/body, heart/body and right kidney/body weight ratios, serum proteins, serum leptin and liver triacylglycerols observed in fructose-fed rats was not affected by chrysin.


Chrysin was able to protect against some of the MS features induced by fructose-feeding.


Metabolic syndrome Chrysin Fructose Hypertension Triacylglycerol 



Metabolic syndrome








Cardiovascular diseases




Oral glucose tolerance test


Systolic blood pressure


Diastolic blood pressure


Mean arterial pressure


Heart rate


Aspartate aminotransferase


Alanine aminotransferase


Alkaline phosphatase


Very low-density lipoproteins


Low-density lipoprotein


high-density lipoproteins


C-reactive protein


Homeostatic model assessment for insulin resistance


Messenger ribonucleic acid


Non-esterified fatty acids


Sterol regulatory binding protein 1c


Carbohydrate response element binding protein


3-Hidroxi-3-methyl-glutaril-CoA reductase


Non-alcoholic steatohepatitis


Angiotensin type 1


Nitric oxide


Reactive oxygen species


Nicotinamide adenine dinucleotide phosphate reductase



We thank animal facility crew from Faculty of Medicine of the University of Porto for all technical support.

Author contributions

Conception and design: NA and FM. Acquisition of data: NA. Technical support: JTG, IR, LG. Analysis and interpretation of data: NA, FM, EK, SA, CS. Drafting the article and revising it for intellectual content: NA, FM. Study Supervision: FM. Final approval of the completed article: NA, FM, EK, SA, CS, JTG, IR, LG.


This work was financed by CAPES—Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil, for financing this project—PN: 10103/13-9.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 23(5):469–480. CrossRefGoogle Scholar
  2. 2.
    Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S (2016) Animal models of metabolic syndrome: a review. Nutr Metab (Lond) 13:65. CrossRefGoogle Scholar
  3. 3.
    Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8(1):42. CrossRefGoogle Scholar
  4. 4.
    Yamanaka T, Fukuda T, Shirota S, Sawai Y, Murai T, Fujita N, Hosoi H (2013) The prevalence and characteristics of metabolic syndrome in patients with vertigo. PLoS One 8(12):e80176. CrossRefGoogle Scholar
  5. 5.
    Toop CR, Gentili S (2016) Fructose beverage consumption induces a metabolic syndrome phenotype in the rat: a systematic review and meta-analysis. Nutrients 8(9):577. CrossRefGoogle Scholar
  6. 6.
    Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299(5):E685–E694. CrossRefGoogle Scholar
  7. 7.
    Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90(1):23–46. CrossRefGoogle Scholar
  8. 8.
    Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. CrossRefGoogle Scholar
  9. 9.
    Ramirez-Espinosa JJ, Saldana-Rios J, Garcia-Jimenez S, Villalobos-Molina R, Avila-Villarreal G, Rodriguez-Ocampo AN, Bernal-Fernandez G, Estrada-Soto S (2017) Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules 23(1):E67. CrossRefGoogle Scholar
  10. 10.
    Mani R, Natesan V (2018) Chrysin: sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 145:187–196. CrossRefGoogle Scholar
  11. 11.
    Andrade N, Araújo JR, Correia-Branco A, Carletti JV, Martel F (2017) Effect of dietary polyphenols on fructose uptake by human intestinal epithelial (Caco-2) cells. J Funct Foods 36:429–439. CrossRefGoogle Scholar
  12. 12.
    Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec (Hoboken) 296(3):378–381. CrossRefGoogle Scholar
  13. 13.
    Pereira CD, Severo M, Araujo JR, Guimaraes JT, Pestana D, Santos A, Ferreira R, Ascensao A, Magalhaes J, Azevedo I, Monteiro R, Martins MJ (2014) Relevance of a hypersaline sodium-rich naturally sparkling mineral water to the protection against metabolic syndrome induction in fructose-fed Sprague–Dawley rats: a biochemical, metabolic, and redox approach. Int J Endocrinol 2014:384583. CrossRefGoogle Scholar
  14. 14.
    Choi JH, Yun JW (2016) Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition 32(9):1002–1010. CrossRefGoogle Scholar
  15. 15.
    El-Bassossy HM, Abo-Warda SM, Fahmy A (2013) Chrysin and luteolin attenuate diabetes-induced impairment in endothelial-dependent relaxation: effect on lipid profile, AGEs and NO generation. Phytother Res 27(11):1678–1684. CrossRefGoogle Scholar
  16. 16.
    Li R, Zang A, Zhang L, Zhang H, Zhao L, Qi Z, Wang H (2014) Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats. Neurol Sci 35(10):1527–1532. CrossRefGoogle Scholar
  17. 17.
    Rani N, Bharti S, Bhatia J, Nag TC, Ray R, Arya DS (2016) Chrysin, a PPAR-gamma agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem Biol Interact 250:59–67. CrossRefGoogle Scholar
  18. 18.
    Samarghandian S, Azimi-Nezhad M, Samini F, Farkhondeh T (2016) Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 94(4):388–393. CrossRefGoogle Scholar
  19. 19.
    Singh J, Chaudhari BP, Kakkar P (2017) Baicalin and chrysin mixture imparts cyto-protection against methylglyoxal induced cytotoxicity and diabetic tubular injury by modulating RAGE, oxidative stress and inflammation. Environ Toxicol Pharmacol 50:67–75. CrossRefGoogle Scholar
  20. 20.
    Kang MK, Lee EJ, Kim YH, Kim DY, Oh H, Kim SI, Kang YH (2018) Chrysin ameliorates malfunction of retinoid visual cycle through blocking activation of AGE-RAGE-ER stress in glucose-stimulated retinal pigment epithelial cells and diabetic eyes. Nutrients 10(8):E1046. CrossRefGoogle Scholar
  21. 21.
    Kang MK, Park SH, Choi YJ, Shin D, Kang YH (2015) Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med (Berl) 93(7):759–772. CrossRefGoogle Scholar
  22. 22.
    Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, Choi YJ, Kang YH (2016) Dietary compound chrysin inhibits retinal neovascularization with abnormal capillaries in db/db mice. Nutrients 8(12):E782. CrossRefGoogle Scholar
  23. 23.
    Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, Choi YJ, Kang YH (2017) Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2alpha-ATF-CHOP pathway in diabetic mice. Acta Pharmacol Sin 38(8):1129–1140. CrossRefGoogle Scholar
  24. 24.
    Lee EJ, Kang MK, Kim DY, Kim YH, Oh H, Kang YH (2018) Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys. Nutrients 10(7):E882. CrossRefGoogle Scholar
  25. 25.
    Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014) Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 279(1):1–7. CrossRefGoogle Scholar
  26. 26.
    Sirovina D, Orsolic N, Koncic MZ, Kovacevic G, Benkovic V, Gregorovic G (2013) Quercetin vs chrysin: effect on liver histopathology in diabetic mice. Hum Exp Toxicol 32(10):1058–1066. CrossRefGoogle Scholar
  27. 27.
    El-Bassossy HM, Abo-Warda SM, Fahmy A (2014) Chrysin and luteolin alleviate vascular complications associated with insulin resistance mainly through PPAR-gamma activation. Am J Chin Med 42(5):1153–1167. CrossRefGoogle Scholar
  28. 28.
    Litterio MC, Vazquez Prieto MA, Adamo AM, Elesgaray R, Oteiza PI, Galleano M, Fraga CG (2015) (−)-Epicatechin reduces blood pressure increase in high-fructose-fed rats: effects on the determinants of nitric oxide bioavailability. J Nutr Biochem 26(7):745–751. CrossRefGoogle Scholar
  29. 29.
    Novak A, Godoy YC, Martinez SA, Ghanem CI, Celuch SM (2015) Fructose-induced metabolic syndrome decreases protein expression and activity of intestinal P-glycoprotein. Nutrition 31(6):871–876. CrossRefGoogle Scholar
  30. 30.
    Ge CX, Yu R, Xu MX, Li PQ, Fan CY, Li JM, Kong LD (2016) Betaine prevented fructose-induced NAFLD by regulating LXRalpha/PPARalpha pathway and alleviating ER stress in rats. Eur J Pharmacol 770:154–164. CrossRefGoogle Scholar
  31. 31.
    Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K, Ohishi M, Satoh N, Tuck ML, Ogihara T (2002) The renin–angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypert 15(1 Pt 1):66–71. CrossRefGoogle Scholar
  32. 32.
    Kawasaki T, Igarashi K, Koeda T, Sugimoto K, Nakagawa K, Hayashi S, Yamaji R, Inui H, Fukusato T, Yamanouchi T (2009) Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J Nutr 139(11):2067–2071. CrossRefGoogle Scholar
  33. 33.
    Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, Diehl AM, Nonalcoholic Steatohepatitis Clinical Research N (2010) Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51(6):1961–1971. CrossRefGoogle Scholar
  34. 34.
    Vila L, Rebollo A, Adalsteisson GS, Alegret M, Merlos M, Roglans N, Laguna JC (2011) Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment. Toxicol Appl Pharmacol 251(1):32–40. CrossRefGoogle Scholar
  35. 35.
    Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi LA (2003) Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension*. Am J Hypertens 16(11):973–978. CrossRefGoogle Scholar
  36. 36.
    Le KA, Tappy L (2006) Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9(4):469–475. CrossRefGoogle Scholar
  37. 37.
    Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ (2008) Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol 295(5):R1370–R1375. CrossRefGoogle Scholar
  38. 38.
    Knight ZA, Hannan KS, Greenberg ML, Friedman JM (2010) Hyperleptinemia is required for the development of leptin resistance. PLoS One 5(6):e11376. CrossRefGoogle Scholar
  39. 39.
    Roglans N, Vila L, Farre M, Alegret M, Sanchez RM, Vazquez-Carrera M, Laguna JC (2007) Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45(3):778–788. CrossRefGoogle Scholar
  40. 40.
    Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A, Su K, Cheng B, Li X, Harvey-White J, Schwartz GJ, Kunos G, Rossetti L, Buettner C (2008) Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med 14(6):667–675. CrossRefGoogle Scholar
  41. 41.
    Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA (2004) Obesity, leptin resistance, and the effects of insulin reduction. Int J Obes 28:1344. CrossRefGoogle Scholar
  42. 42.
    Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA (2005) Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45(5):1012–1018. CrossRefGoogle Scholar
  43. 43.
    Bursac BN, Djordjevic AD, Vasiljevic AD, Milutinovic DD, Velickovic NA, Nestorovic NM, Matic GM (2013) Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J Nutr Biochem 24(6):1166–1172. CrossRefGoogle Scholar
  44. 44.
    Koo HY, Wallig MA, Chung BH, Nara TY, Cho BH, Nakamura MT (2008) Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta 1782(5):341–348. CrossRefGoogle Scholar
  45. 45.
    Samuel VT (2011) Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab 22(2):60–65. CrossRefGoogle Scholar
  46. 46.
    Prince PD, Lanzi CR, Toblli JE, Elesgaray R, Oteiza PI, Fraga CG, Galleano M (2016) Dietary (−)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radic Biol Med 90:35–46. CrossRefGoogle Scholar
  47. 47.
    Khanal RC, Howard LR, Wilkes SE, Rogers TJ, Prior RL (2012) Effect of dietary blueberry pomace on selected metabolic factors associated with high fructose feeding in growing Sprague–Dawley rats. J Med Food 15(9):802–810. CrossRefGoogle Scholar
  48. 48.
    Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M (2014) Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep 1:200–208. CrossRefGoogle Scholar
  49. 49.
    Ichimura M, Masuzumi M, Kawase M, Sakaki M, Tamaru S, Nagata Y, Tanaka K, Suruga K, Tsuneyama K, Matsuda S, Omagari K (2017) A diet-induced Sprague–Dawley rat model of nonalcoholic steatohepatitis-related cirrhosis. J Nutr Biochem 40:62–69. CrossRefGoogle Scholar
  50. 50.
    Jeyapal S, Putcha UK, Mullapudi VS, Ghosh S, Sakamuri A, Kona SR, Vadakattu SS, Madakasira C, Ibrahim A (2018) Chronic consumption of fructose in combination with trans fatty acids but not with saturated fatty acids induces nonalcoholic steatohepatitis with fibrosis in rats. Eur J Nutr 57(6):2171–2187. CrossRefGoogle Scholar
  51. 51.
    Softic S, Cohen DE, Kahn CR (2016) Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 61(5):1282–1293. CrossRefGoogle Scholar
  52. 52.
    Balta C, Ciceu A, Herman H, Rosu M, Boldura OM, Hermenean A (2018) Dose-dependent antifibrotic effect of chrysin on regression of liver fibrosis: the role in extracellular matrix remodeling. Dose Response 16(3):1559325818789835. CrossRefGoogle Scholar
  53. 53.
    Hermenean A, Mariasiu T, Navarro-Gonzalez I, Vegara-Meseguer J, Miutescu E, Chakraborty S, Perez-Sanchez H (2017) Hepatoprotective activity of chrysin is mediated through TNF-alpha in chemically-induced acute liver damage: an in vivo study and molecular modeling. Exp Ther Med 13(5):1671–1680. CrossRefGoogle Scholar
  54. 54.
    Klein AV, Kiat H (2015) The mechanisms underlying fructose-induced hypertension: a review. J Hypertens 33(5):912–920. CrossRefGoogle Scholar
  55. 55.
    Ramanathan V, Thekkumalai M (2014) Role of chrysin on hepatic and renal activities of Nω-nitro-l-arginine-methylester induced hypertensive rats. Int J Nutr Pharmacol Neurol Dis 4(1):58–63. CrossRefGoogle Scholar
  56. 56.
    Veerappan R, Malarvili T (2018) Chrysin pretreatment improves angiotensin system, cGMP concentration in L-NAME induced hypertensive rats. Indian J Clin Biochem. Google Scholar
  57. 57.
    Gordish KL, Kassem KM, Ortiz PA, Beierwaltes WH (2017) Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide. Physiol Rep 5(7):pii: e13162. CrossRefGoogle Scholar
  58. 58.
    Shinozaki K, Ayajiki K, Nishio Y, Sugaya T, Kashiwagi A, Okamura T (2004) Evidence for a causal role of the renin–angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 43(2):255–262. CrossRefGoogle Scholar
  59. 59.
    Hitomi H, Kiyomoto H, Nishiyama A (2007) Angiotensin II and oxidative stress. Curr Opin Cardiol 22(4):311–315. CrossRefGoogle Scholar
  60. 60.
    Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 96(8):818–822. CrossRefGoogle Scholar
  61. 61.
    Mayer MA, Höcht C, Giani JF, Muñoz MC, Carranza A, Taira CA, Dominici FP, Puyó AM, Fernández BE (2013) Central insulin–angiotensin II interaction in blood pressure regulation in fructose overloaded rats. Regul Pept 185:37–43. CrossRefGoogle Scholar
  62. 62.
    Bundalo MM, Zivkovic MD, Romic SD, Tepavcevic SN, Koricanac GB, Djuric TM, Stankovic AD (2016) Fructose-rich diet induces gender-specific changes in expression of the renin–angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst 17(2):1470320316642915. CrossRefGoogle Scholar
  63. 63.
    Xu X, Tu L, Wang L, Fang X, Wang DW (2011) CYP2J3 gene delivery reduces insulin resistance via upregulation of eNOS in fructose-treated rats. Cardiovasc Diabetol 10:114. CrossRefGoogle Scholar
  64. 64.
    Villar IC, Jimenez R, Galisteo M, Garcia-Saura MF, Zarzuelo A, Duarte J (2002) Effects of chronic chrysin treatment in spontaneously hypertensive rats. Planta Med 68(9):847–850. CrossRefGoogle Scholar
  65. 65.
    Denver RJ, Bonett RM, Boorse GC (2011) Evolution of leptin structure and function. Neuroendocrinology 94(1):21–38. CrossRefGoogle Scholar
  66. 66.
    Harwood HJ Jr (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63(1):57–75. CrossRefGoogle Scholar
  67. 67.
    Zamami Y, Takatori S, Hobara N, Yabumae N, Tangsucharit P, Jin X, Hashikawa N, Kitamura Y, Sasaki K, Kawasaki H (2011) Hyperinsulinemia induces hypertension associated with neurogenic vascular dysfunction resulting from abnormal perivascular innervations in rat mesenteric resistance arteries. Hypertens Res 34(11):1190–1196. CrossRefGoogle Scholar
  68. 68.
    Samarghandian S, Farkhondeh T, Azimi-Nezhad M (2017) Protective effects of chrysin against drugs and toxic agents. Dose Response 15(2):1559325817711782. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of PortoUniversity of PortoPortoPortugal
  2. 2.Instituto de Investigação e Inovação em Saúde (I3S)University of PortoPortoPortugal
  3. 3.Department of Clinical PathologySão João Hospital CentrePortoPortugal
  4. 4.Institute of Public HealthUniversity of PortoPortoPortugal
  5. 5.CINTESIS, Center for Research in Health Technologies and Information SystemsUniversity of PortoPortoPortugal

Personalised recommendations