Advertisement

N-Acetylcysteine protects against intrauterine growth retardation-induced intestinal injury via restoring redox status and mitochondrial function in neonatal piglets

  • Hao Zhang
  • Yue Li
  • Yueping Chen
  • Lili Zhang
  • Tian WangEmail author
Original Contribution

Abstract

Purpose

Intrauterine growth retardation (IUGR) is detrimental to the intestinal development of neonates, yet satisfactory treatment strategies remain limited. This study was, therefore, conducted using neonatal piglets as a model to investigate the potential of N-acetylcysteine (NAC) to alleviate intestinal damage caused by IUGR.

Methods

Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected and then fed a basal milk diet (NBW-CON and IUGR-CON groups) or a basal milk diet supplemented with 1.2 g NAC per kg of diet (IUGR-NAC group) from 7 to 21 days of age (n = 7). Parameters associated with the severity of intestinal injury, villus morphology and ultrastructural structure, redox status, and mitochondrial function were analyzed.

Results

Compared with the NBW-CON piglets, the IUGR-CON piglets exhibited decreased villus height and greater numbers of apoptotic cells in jejunum, along with the increases in malondialdehyde and protein carbonyl concentrations and a decreased adenosine triphosphate (ATP) content. Treatment with NAC significantly increased jejunal superoxide dismutase activity, reduced glutathione: oxidized glutathione ratio, and the mRNA abundance of nuclear respiratory factor 2, heme oxygenase 1, and superoxide dismutase 2 in the IUGR-NAC piglets compared with the IUGR-CON piglets. In addition, NAC improved the efficiency of mitochondrial oxidative metabolism and ATP generation, ameliorated mitochondrial swelling, and inhibited the overproduction of mitochondrial superoxide anion in the jejunal mucosa.

Conclusions

Dietary supplementation of NAC shows promise for attenuating the early intestinal injury of young piglets with IUGR, probably through its antioxidant action to restore redox status and mitochondrial function.

Keywords

Intrauterine growth retardation N-Acetylcysteine Intestinal damage Mitochondrial function Redox status Piglet 

Notes

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant numbers 31772634 and 31802094), the Natural Science Foundation of Jiangsu Province (Grant number BK20180531), the Postdoctoral Research Foundation of China (Grant number 2018M632320), the Open Project of Shanghai Key Laboratory of Veterinary Biotechnology (Grant number klab201710), and the Phase II Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors would like to thank all co-workers for their help and cooperation in this trial.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The use of animals for this research was approved by the Institutional Animal Care and Use Committee of Nanjing Agricultural University.

Supplementary material

394_2018_1878_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)
394_2018_1878_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 16 KB)
394_2018_1878_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 13 KB)
394_2018_1878_MOESM4_ESM.xlsx (29 kb)
Supplementary material 4 (XLSX 29 KB)

References

  1. 1.
    Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20.  https://doi.org/10.1093/bmb/60.1.5 CrossRefPubMedGoogle Scholar
  2. 2.
    Mandò C, Tabano S, Colapietro P et al (2011) Transferrin receptor gene and protein expression and localization in human IUGR and normal term placentas. Placenta 32:44–50.  https://doi.org/10.1016/j.placenta.2010.10.009 CrossRefPubMedGoogle Scholar
  3. 3.
    Norberg S, Powell TL, Jansson T (1998) Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr Res 44:233–238.  https://doi.org/10.1203/00006450-199808000-00016 CrossRefPubMedGoogle Scholar
  4. 4.
    Zadrożna M, Gawlik M, Nowak B et al (2009) Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas. J Trace Elem Med Bio 23:144–148.  https://doi.org/10.1016/j.jtemb.2009.02.005 CrossRefGoogle Scholar
  5. 5.
    Yung H, Calabrese S, Hynx D et al (2008) Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 173:451–462.  https://doi.org/10.2353/ajpath.2008.071193 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Burton GJ, Yung HW, Cindrova-Davies T et al (2009) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30:43–48.  https://doi.org/10.1016/j.placenta.2008.11.003 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Yung H, Hemberger M, Watson ED et al (2012) Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction. Pathology 228:554–564.  https://doi.org/10.1002/path.4068 CrossRefGoogle Scholar
  8. 8.
    Wang J, Chen L, Li D et al (2008) Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J Nutr 138:60–66.  https://doi.org/10.1093/jn/138.1.60 CrossRefPubMedGoogle Scholar
  9. 9.
    D’Inca R, Gras-Le Guen C, Che L et al (2011) Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 99:208–216.  https://doi.org/10.1159/000314919 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang W, Degroote J, Van Ginneken C et al (2016) Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB J 30:863–873.  https://doi.org/10.1096/fj.15-274779 CrossRefPubMedGoogle Scholar
  11. 11.
    Bernstein IM, Horbar JD, Badger GJ et al (2000) Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 182:198–206.  https://doi.org/10.1016/S0002-9378(00)70513-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Manogura AC, Turan O, Kush ML et al (2008) Predictors of necrotizing enterocolitis in preterm growth-restricted neonates. Am J Obstet Gynecol 198:638.e1–638.e5.  https://doi.org/10.1016/j.ajog.2007.11.048 CrossRefGoogle Scholar
  13. 13.
    Aydemir C, Dilli D, Uras N et al (2011) Total oxidant status and oxidative stress are increased in infants with necrotizing enterocolitis. J Pediatr Surg 46:2096–2100.  https://doi.org/10.1016/j.jpedsurg.2011.06.032 CrossRefPubMedGoogle Scholar
  14. 14.
    Kim M, Christley S, Alverdy JC et al (2012) Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect (Larchmt) 13:18–32.  https://doi.org/10.1089/sur.2011.057 CrossRefGoogle Scholar
  15. 15.
    Perrone S, Tataranno ML, Negro S et al (2012) May oxidative stress biomarkers in cord blood predict the occurrence of necrotizing enterocolitis in preterm infants? J Matern Fetal Neonatal Med 25 Suppl 1:128–131.  https://doi.org/10.3109/14767058.2012.663197
  16. 16.
    Yin J, Ren W, Liu G et al (2013) Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 47:1027–1035.  https://doi.org/10.3109/10715762.2013.848277 CrossRefPubMedGoogle Scholar
  17. 17.
    Robles R, Palomino N, Robles A (2001) Oxidative stress in the neonate. Early Hum Dev 65(Suppl 2):75–81.  https://doi.org/10.1016/S0378-3782(01)00209-2 CrossRefGoogle Scholar
  18. 18.
    Friel JK, Friesen RW, Harding SV et al (2004) Evidence of oxidative stress in full-term healthy infants. Pediatr Res 56:878–882.  https://doi.org/10.1203/01.PDR.0000146032.98120.43 CrossRefPubMedGoogle Scholar
  19. 19.
    Michiels J, De Vos M, Missotten J et al (2013) Maturation of digestive function is retarded and plasma antioxidant capacity lowered in fully weaned low birth weight piglets. Br J Nutr 109:65–75.  https://doi.org/10.1017/S0007114512000670 CrossRefPubMedGoogle Scholar
  20. 20.
    Zafarullah M, Li WQ, Sylvester J et al (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20.  https://doi.org/10.1007/s000180300001 CrossRefPubMedGoogle Scholar
  21. 21.
    Aruoma OI, Halliwell B, Hoey BM et al (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597.  https://doi.org/10.1016/0891-5849(89)90066-X CrossRefPubMedGoogle Scholar
  22. 22.
    Liu JQ, Lee TF, Chen C et al (2010) N-acetylcysteine improves hemodynamics and reduces oxidative stress in the brains of newborn piglets with hypoxia-reoxygenation injury. J Neurotraum 27:1865–1873.  https://doi.org/10.1089/neu.2010.1325 CrossRefGoogle Scholar
  23. 23.
    Zhang H, Su W, Ying Z et al (2018) N-acetylcysteine attenuates intrauterine growth retardation-induced hepatic damage in suckling piglets by improving glutathione synthesis and cellular homeostasis. Eur J Nutr 57:327–338.  https://doi.org/10.1007/s00394-016-1322-x CrossRefPubMedGoogle Scholar
  24. 24.
    Amrouche-Mekkioui I, Djerdjouri B (2012) N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice. Eur J Pharmacol 691:209–217.  https://doi.org/10.1016/j.ejphar.2012.06.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Yi D, Hou Y, Xiao H et al (2017) N-acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways. Amino Acids 49:1915–1929.  https://doi.org/10.1007/s00726-017-2389-2 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang L, Zhou J, Hou Y et al (2017) N-acetylcysteine supplementation alleviates intestinal injury in piglets infected by porcine epidemic diarrhea virus. Amino Acids 49:1931–1943.  https://doi.org/10.1007/s00726-017-2397-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Ciralik H, Bulbuloglu E, Cetinkaya A et al (2006) Effects of N-acetylcysteine on methotrexate-induced small intestinal damage in rats. Mt Sinai J Med 73:1086–1092PubMedGoogle Scholar
  28. 28.
    Merrifield CA, Lewis M, Claus SP et al (2011) A metabolic system-wide characterisation of the pig: a model for human physiology. Mol Biosyst 7:2577–2588.  https://doi.org/10.1039/c1mb05023k CrossRefPubMedGoogle Scholar
  29. 29.
    Wang T, Huo YJ, Shi F et al (2005) Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol Neonate 88:66–72.  https://doi.org/10.1159/000084645 CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang H, Li Y, Su W et al (2017) Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status. Mol Nutr Food Res 61:1600653.  https://doi.org/10.1002/mnfr.201600653 CrossRefGoogle Scholar
  31. 31.
    Hou Y, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242.  https://doi.org/10.1007/s00726-011-1191-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Yi D, Hou Y, Wang L et al (2014) Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Br J Nutr 111:46–54.  https://doi.org/10.1017/S0007114513002171 CrossRefPubMedGoogle Scholar
  33. 33.
    Han F, Hu L, Xuan Y et al (2013) Effects of high nutrient intake on the growth performance, intestinal morphology and immune function of neonatal intra-uterine growth-retarded pigs. Br J Nutr 110:1819–1827.  https://doi.org/10.1017/S0007114513001232 CrossRefPubMedGoogle Scholar
  34. 34.
    Li Y, Zhang H, Chen Y et al (2015) Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. Anim Feed Sci Technol 208:119–131.  https://doi.org/10.1016/j.anifeedsci.2015.07.001 CrossRefGoogle Scholar
  35. 35.
    Du H, Guo L, Yan S et al (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA 107:18670–18675.  https://doi.org/10.1073/pnas.1006586107 CrossRefPubMedGoogle Scholar
  36. 36.
    Ong MM, Wang AS, Leow KY et al (2006) Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2(+/-) mice. Free Radic Biol Med 40:420–429.  https://doi.org/10.1016/j.freeradbiomed.2005.08.038 CrossRefPubMedGoogle Scholar
  37. 37.
    Fung CM, White JR, Brown AS et al (2016) Intrauterine growth restriction alters mouse intestinal architecture during development. PLoS One 11:e0146542.  https://doi.org/10.1371/journal.pone.0146542 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Regev RH, Reichman B (2004) Prematurity and intrauterine growth retardation—double jeopardy? Clin Perinatol 31:453–473.  https://doi.org/10.1016/j.clp.2004.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Luk GD, Bayless TM, Baylin SB (1983) Plasma postheparin diamine oxidase. Sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat. J Clin Invest 71:1308–1315.  https://doi.org/10.1172/JCI110881 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gnauck A, Lentle RG, Kruger MC (2015) Aspirin-induced increase in intestinal paracellular permeability does not affect the levels of LPS in venous blood of healthy women. Innate Immun 21:537–545.  https://doi.org/10.1177/1753425914557101 CrossRefPubMedGoogle Scholar
  41. 41.
    Bhattacharyya A, Chattopadhyay R, Mitra S et al (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354.  https://doi.org/10.1152/physrev.00040.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rao RK, Basuroy S, Rao VU et al (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481.  https://doi.org/10.1042/BJ20011804 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sheth P, Basuroy S, Li C et al (2003) Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem 278:49239–49245.  https://doi.org/10.1074/jbc.M305654200 CrossRefPubMedGoogle Scholar
  44. 44.
    Dixit P, Jain DK, Rajpoot JS (2012) Differential effect of oxidative stress on intestinal apparent permeability of drugs transported by paracellular and transcellular route. Eur J Drug Metab Pharmacokinet 37:203–209.  https://doi.org/10.1007/s13318-012-0099-4 CrossRefPubMedGoogle Scholar
  45. 45.
    He Q, Ren P, Kong X et al (2011) Intrauterine growth restriction alters the metabonome of the serum and jejunum in piglets. Mol Biosyst 7:2147–2155.  https://doi.org/10.1039/c1mb05024a CrossRefPubMedGoogle Scholar
  46. 46.
    Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312:163–167.  https://doi.org/10.1042/bj3120163 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885.  https://doi.org/10.1126/science.1110542 CrossRefPubMedGoogle Scholar
  48. 48.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762.  https://doi.org/10.1016/j.freeradbiomed.2009.12.022 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhang Y, Marcillat O, Giulivi C et al (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330–16336PubMedGoogle Scholar
  50. 50.
    Sandhir R, Sood A, Mehrotra A et al (2012) N-acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegener Dis 9:145–157.  https://doi.org/10.1159/000334273 CrossRefPubMedGoogle Scholar
  51. 51.
    Lu H, Zhang DM, Chen HL et al (2009) N-acetylcysteine suppresses oxidative stress in experimental rats with subarachnoid hemorrhage. J Clin Neurosci 16:684–688.  https://doi.org/10.1016/j.jocn.2008.04.021 CrossRefPubMedGoogle Scholar
  52. 52.
    Kuo HT, Lee JJ, Hsiao HH et al (2009) N-acetylcysteine prevents mitochondria from oxidative injury induced by conventional peritoneal dialysate in human peritoneal mesothelial cells. Am J Nephrol 30:179–185.  https://doi.org/10.1159/000213502 CrossRefPubMedGoogle Scholar
  53. 53.
    Arakawa M, Ito Y (2007) N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum 6:308–314.  https://doi.org/10.1080/14734220601142878 CrossRefPubMedGoogle Scholar
  54. 54.
    Tayman C, Tonbul A, Kosus A et al (2012) N-acetylcysteine may prevent severe intestinal damage in necrotizing enterocolitis. J Pediatr Surg 47:540–550.  https://doi.org/10.1016/j.jpedsurg.2011.09.051 CrossRefPubMedGoogle Scholar
  55. 55.
    Romagnoli C, Marcucci T, Picariello L et al (2013) Role of N-acetylcysteine and GSH redox system on total and active MMP-2 in intestinal myofibroblasts of Crohn’s disease patients. Int J Colorectal Dis 28:915–924.  https://doi.org/10.1007/s00384-012-1632-2 CrossRefPubMedGoogle Scholar
  56. 56.
    Stepkowski TM, Kruszewski MK (2011) Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radic Biol Med 50:1186–1195.  https://doi.org/10.1016/j.freeradbiomed.2011.01.033 CrossRefPubMedGoogle Scholar
  57. 57.
    Wang LL, Huang YH, Yan CY et al (2016) N-acetylcysteine ameliorates prostatitis via miR-141 regulating Keap1/Nrf2 signaling. Inflammation 39:938–947.  https://doi.org/10.1007/s10753-016-0327-1 CrossRefPubMedGoogle Scholar
  58. 58.
    Dolinay T, Choi AM, Ryter SW (2012) Heme Oxygenase-1/CO as protective mediators in cigarette smoke-induced lung cell injury and chronic obstructive pulmonary disease. Curr Pharm Biotechnol 13:769–776.  https://doi.org/10.2174/138920112800399338 CrossRefPubMedGoogle Scholar
  59. 59.
    Martinez Banaclocha M, Martinez N (1999) N-acetylcysteine elicited increase in cytochrome c oxidase activity in mice synaptic mitochondria. Brain Res 842:249–251.  https://doi.org/10.1016/S0006-8993(99)01819-3 CrossRefPubMedGoogle Scholar
  60. 60.
    Miquel J, Ferrandiz ML, De Juan E et al (1995) N-acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria. Eur J Pharmacol 292:333–335.  https://doi.org/10.1016/0926-6917(95)90041-1 CrossRefPubMedGoogle Scholar
  61. 61.
    Donnelly PJ, Walker RM, Racz WJ (1994) Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch Toxicol 68:110–118.  https://doi.org/10.1007/s002040050043 CrossRefPubMedGoogle Scholar
  62. 62.
    Banaclocha MM (2001) Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med Hypotheses 56:472–477.  https://doi.org/10.1054/mehy.2000.1194 CrossRefPubMedGoogle Scholar
  63. 63.
    Seppet E, Gruno M, Peetsalu A et al (2009) Mitochondria and energetic depression in cell pathophysiology. Int J Mol Sci 10:2252–2303.  https://doi.org/10.3390/ijms10052252 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Xiao H, Wu M, Shao F et al (2016) N-acetyl-l-cysteine protects the enterocyte against oxidative damage by modulation of mitochondrial function. Mediators Inflamm 2016:8364279.  https://doi.org/10.1155/2016/8364279

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary MedicineNanjing Agricultural UniversityNanjingPeople’s Republic of China
  3. 3.Shanghai Key Laboratory of Veterinary BiotechnologyShanghaiPeople’s Republic of China
  4. 4.Institute of Animal ScienceJiangsu Academy of Agricultural SciencesNanjingPeople’s Republic of China
  5. 5.Postdoctoral Research Station of Food Science and Engineering, College of Food Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations