Advertisement

European Journal of Nutrition

, Volume 58, Issue 8, pp 3229–3239 | Cite as

Association between erythrocyte fatty acids in de novo lipogenesis pathway and DXA-derived body fat and trunk fat distribution in Chinese adults: a prospective study

  • Fang-fang Zeng
  • Zhan-yong Chen
  • Ju-Sheng Zheng
  • Jie-sheng Lin
  • Yi-hong Li
  • Rui Qiu
  • Cheng Wang
  • Li-li Sun
  • Yu-ming ChenEmail author
Original Contribution
  • 270 Downloads

Abstract

Purpose

Higher levels of fatty acids (FAs) in the de novo lipogenesis (DNL) pathway might be associated with higher levels of fat mass (FM), while limited evidence is available from the general population. We aimed to examine the associations between DNL-FAs and body fat and fat distribution in a general population of Chinese adults.

Methods

This community-based prospective cohort study included 3,075 participants (68% women) aged 40–75 years in urban Guangzhou, China. We measured erythrocyte DNL-FAs composition (including C16:0, C16:1n-7, C18:0, and C18:1n-9) at baseline and %FM over the total body (TB), trunk, limbs, android (A) and gynoid (G) regions after 3.2 years and 6.3 years of follow-up, respectively.

Results

Generally, higher proportions of individual erythrocyte DNL-FAs and their combined index were positively associated with adipose indices in the multivariable cross-sectional and longitudinal analyses. The cross-sectional percentage mean differences in quartile 4 (vs. 1) of the DNL index were 3.43% (TB), 4.56% (trunk), and 2.67% (A/G ratio) (all P trends < 0.01). The corresponding values in longitudinal changes of adipose indices were 1.40% (TB), 1.78% (trunk), and 1.32% (A) (all P trends < 0.05). The above associations tended to be more pronounced in the trunk and android area than the limbs and gynoid area.

Conclusions

Erythrocyte DNL-FAs may contribute to an increase in total body fat in Chinese adults, particularly FM distributed in trunk and abdominal regions.

Keywords

Body fat Chinese adults De novo lipogenesis Pathway Erythrocyte fatty acids Prospective study 

Notes

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (Nos. 81472965 and 81602853), Sun Yat-sen University Foundation for Youth Teachers (No. 17ykpy12), the 5010 Program for Clinical Researches (No. 2007032) by the Sun Yat-sen University, Guangzhou, P. R. China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to Mian-li Xiao, Ding Ding, Wen-qi Shi, and Li-ping He, and other team staff for their contribution in the data collection and for facilitating both the recruitment of participants and the interviews.

Compliance with ethical standards

Conflict of interest

None of the authors reported a conflict of interest related to the study.

Supplementary material

394_2018_1866_MOESM1_ESM.docx (70 kb)
Supplementary material 1 (DOCX 70 KB)

References

  1. 1.
    Bray GA, Fruhbeck G, Ryan DH, Wilding JP (2016) Management of obesity. Lancet 387:1947–1956.  https://doi.org/10.1016/S0140-6736(16)00271-3 doiCrossRefPubMedGoogle Scholar
  2. 2.
    Mousavi SN, Koohdani F, Shidfar F, Eslaminejad MB (2016) Comparison of maternal isocaloric high carbohydrate and high fat diets on osteogenic and adipogenic genes expression in adolescent mice offspring. Nutr Metab (Lond) 13:69.  https://doi.org/10.1186/s12986-016-0130-x CrossRefGoogle Scholar
  3. 3.
    Saadatian-Elahi M, Slimani N, Chajes V, Jenab M, Goudable J, Biessy C, Ferrari P, Byrnes G, Autier P, Peeters PH, Ocké M, Bueno de Mesquita B, Johansson I, Hallmans G, Manjer J, Wirfält E, González CA, Navarro C, Martinez C, Amiano P, Suárez LR, Ardanaz E, Tjønneland A, Halkjaer J, Overvad K, Jakobsen MU, Berrino F, Pala V, Palli D, Tumino R, Vineis P, Santucci de Magistris M, Spencer EA, Crowe FL, Bingham S, Khaw KT, Linseisen J, Rohrmann S, Boeing H, Noethlings U, Olsen KS, Skeie G, Lund E, Trichopoulou A, Oustoglou E, Clavel-Chapelon F, Riboli E (2009) Plasma phospholipid fatty acid profiles and their association with food intakes: results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 89:331–346.  https://doi.org/10.3945/ajcn.2008.26834 CrossRefPubMedGoogle Scholar
  4. 4.
    Fretts AM, Mozaffarian D, Siscovick DS, King IB, McKnight B, Psaty BM, Rimm EB, Sitlani C, Sacks FM, Song X, Sotoodehnia N, Spiegelman D, Lemaitre RN (2016) Associations of plasma phospholipid SFAs with total and cause-specific mortality in older adults differ according to SFA chain length. J Nutr 146:298–305.  https://doi.org/10.3945/jn.115.222117 CrossRefPubMedGoogle Scholar
  5. 5.
    Hagenfeldt L, Wahren J, Pernow B, Raf L (1972) Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest 51:2324–2330.  https://doi.org/10.1172/JCI107043 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Frigolet ME, Gutierrez-Aguilar R (2017) The role of the novel lipokine palmitoleic acid in health and disease. Adv Nutr 8:173S–181S.  https://doi.org/10.3945/an.115.011130 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Griffiths G, Stymne S, Stobart AK (1988) The utilisation of fatty-acid substrates in triacylglycerol biosynthesis by tissue-slices of developing safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) cotyledons. Planta 173:309–316.  https://doi.org/10.1007/BF00401017 CrossRefPubMedGoogle Scholar
  8. 8.
    Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, Hotamisligil GS (2010) Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr 92:1350–1358.  https://doi.org/10.3945/ajcn.110.003970 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A (2011) Adipose tissue palmitoleic acid and obesity in humans: does it behave as a lipokine? Am J Clin Nutr 93:186–191.  https://doi.org/10.3945/ajcn.110.006502 CrossRefPubMedGoogle Scholar
  10. 10.
    Paillard F, Catheline D, Duff FL, Bouriel M, Deugnier Y, Pouchard M, Daubert JC, Legrand P (2008) Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr Metab Cardiovasc Dis 18:436–440.  https://doi.org/10.1016/j.numecd.2007.02.017 CrossRefPubMedGoogle Scholar
  11. 11.
    Kawashima A, Sugawara S, Okita M, Akahane T, Fukui K, Hashiuchi M, Kataoka C, Tsukamoto I (2009) Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese men with abdominal obesity or metabolic syndrome. J Nutr Sci Vitaminol (Tokyo) 55:400–406.  https://doi.org/10.3177/jnsv.55.400 CrossRefGoogle Scholar
  12. 12.
    Zong G, Ye X, Sun L, Li H, Yu Z, Hu FB, Sun Q, Lin X (2012) Associations of erythrocyte palmitoleic acid with adipokines, inflammatory markers, and the metabolic syndrome in middle-aged and older Chinese. Am J Clin Nutr 96:970–976.  https://doi.org/10.3945/ajcn.112.040204 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U (2009) Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis 8:37.  https://doi.org/10.1186/1476-511X-8-37 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu JH, Lemaitre RN, Imamura F, King IB, Song X, Spiegelman D, Siscovick DS, Mozaffarian D (2011) Fatty acids in the de novo lipogenesis pathway and risk of coronary heart disease: the Cardiovascular Health Study. Am J Clin Nutr 94:431–438.  https://doi.org/10.3945/ajcn.111.012054 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Franklin RM, Ploutz-Snyder L, Kanaley JA (2009) Longitudinal changes in abdominal fat distribution with menopause. Metabolism 58:311–315.  https://doi.org/10.1016/j.metabol.2008.09.030 CrossRefPubMedGoogle Scholar
  16. 16.
    Forte R, Pesce C, De Vito G, Boreham CA (2017) The body fat-cognition relationship in healthy older individuals: does gynoid vs android distribution matter? J Nutr Health Aging 21:284–291.  https://doi.org/10.1007/s12603-016-0783-1 CrossRefPubMedGoogle Scholar
  17. 17.
    Tatsumi Y, Nakao YM, Masuda I, Higashiyama A, Takegami M, Nishimura K, Watanabe M, Ohkubo T, Okamura T, Miyamoto Y (2017) Risk for metabolic diseases in normal weight individuals with visceral fat accumulation: a cross-sectional study in Japan. BMJ Open 7:e013831.  https://doi.org/10.1136/bmjopen-2016-013831 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu YH, Xu Y, Wen YB, Guan K, Ling WH, He LP, Su YX, Chen YM (2013) Association of weight-adjusted body fat and fat distribution with bone mineral density in middle-aged chinese adults: a cross-sectional study. PLoS One 8:e63339.  https://doi.org/10.1371/journal.pone.0063339 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang ZQ, Deng J, He LP, Ling WH, Su YX, Chen YM (2013) Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in Chinese men and women. PLoS One 8:e70893.  https://doi.org/10.1371/journal.pone.0070893 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228S (discussion 9S–31S) CrossRefGoogle Scholar
  21. 21.
    Dai XW, Zhang B, Wang P, Chen CG, Chen YM, Su YX (2014) Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women. Atherosclerosis 232:79–85.  https://doi.org/10.1016/j.atherosclerosis.2013.10.028 CrossRefPubMedGoogle Scholar
  22. 22.
    Zeng FF, Sun LL, Liu YH, Xu Y, Guan K, Ling WH, Chen YM (2014) Higher erythrocyte n-3 PUFAs are associated with decreased blood pressure in middle-aged and elderly Chinese adults. J Nutr 144:1240–1246.  https://doi.org/10.3945/jn.114.192286 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in China (2002) Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci 15:83–96PubMedGoogle Scholar
  24. 24.
    Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062. https://doi.org/10.1016/S0140-6736(05)67402-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Li L, Wang C, Bao Y, Peng L, Gu H, Jia W (2012) Optimal body fat percentage cut-offs for obesity in Chinese adults. Clin Exp Pharmacol Physiol 39:393–398.  https://doi.org/10.1111/j.1440-1681.2012.05684.x CrossRefPubMedGoogle Scholar
  26. 26.
    Saadatian-Elahi M, Slimani N, Chajès V, Jenab M, Goudable J, Biessy C, Ferrari P, Byrnes G, Autier P, Peeters PH, Ocké M, Bueno de Mesquita B, Johansson I, Hallmans G, Manjer J, Wirfält E, González CA, Navarro C, Martinez C, Amiano P, Suárez LR, Ardanaz E, Tjønneland A, Halkjaer J, Overvad K, Jakobsen MU, Berrino F, Pala V, Palli D, Tumino R, Vineis P, Santucci de Magistris M, Spencer EA, Crowe FL, Bingham S, Khaw KT, Linseisen J, Rohrmann S, Boeing H, Noethlings U, Olsen KS, Skeie G, Lund E, Trichopoulou A, Oustoglou E, Clavel-Chapelon F, Riboli E (2009) Plasma phospholipid fatty acid profiles and their association with food intakes: results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 89:331–346.  https://doi.org/10.3945/ajcn.2008.26834 CrossRefPubMedGoogle Scholar
  27. 27.
    Zong G, Zhu J, Sun L, Ye X, Lu L, Jin Q, Zheng H, Yu Z, Zhu Z, Li H, Sun Q, Lin X (2013) Associations of erythrocyte fatty acids in the de novo lipogenesis pathway with risk of metabolic syndrome in a cohort study of middle-aged and older Chinese. Am J Clin Nutr 98:319–326.  https://doi.org/10.3945/ajcn.113.061218 CrossRefPubMedGoogle Scholar
  28. 28.
    Misra A, Sharma R, Gulati S, Joshi SR, Sharma V, Ibrahim A, Joshi S, Laxmaiah A, Kurpad A, Raj RK, Mohan V, Chandalia H, Krishnaswamy K, Boindala S, Gopalan S, Bhattiprolu SK, Modi S, Vikram NK, Makkar BM, Mathur M, Dey S, Vasudevan S, Gupta SP, Puri S, Joshi P, Khanna K, Mathur P, Krishnaswamy S, Madan J, Karmarkar M, Seth V, Passi SJ, Chadha D, Bhardwaj S, National Dietary Guidelines Consensus Group (2011) Consensus dietary guidelines for healthy living and prevention of obesity, the metabolic syndrome, diabetes, and related disorders in Asian Indians. Diabetes Technol Ther 13:683–694.  https://doi.org/10.1089/dia.2010.0198 CrossRefPubMedGoogle Scholar
  29. 29.
    Marques-Lopes I, Ansorena D, Astiasaran I, Forga L, Martinez JA (2001) Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am J Clin Nutr 73:253–261CrossRefGoogle Scholar
  30. 30.
    Hellerstein MK (1996) Synthesis of fat in response to alterations in diet: insights from new stable isotope methodologies. Lipids 31(Suppl):S117–S125CrossRefGoogle Scholar
  31. 31.
    Parks EJ, Hellerstein MK (2000) Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr 71:412–433CrossRefGoogle Scholar
  32. 32.
    Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J, Schulze MB, Crowe FL, Huerta JM, Guevara M, Beulens JW, van Woudenbergh GJ, Wang L, Summerhill K, Griffin JL, Feskens EJ, Amiano P, Boeing H, Clavel-Chapelon F, Dartois L, Fagherazzi G, Franks PW, Gonzalez C, Jakobsen MU, Kaaks R, Key TJ, Khaw KT, Kühn T, Mattiello A, Nilsson PM, Overvad K, Pala V, Palli D, Quirós JR, Rolandsson O, Roswall N, Sacerdote C, Sánchez MJ, Slimani N, Spijkerman AM, Tjonneland A, Tormo MJ, Tumino R van der A DL, van der Schouw YT, Langenberg C, Riboli E, Wareham NJ (2014) Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol 2:810–818.  https://doi.org/10.1016/S2213-8587(14)70146-9 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Epidemiology, School of Basic Medical SciencesJinan UniversityGuangzhouPeople’s Republic of China
  3. 3.MRC Epidemiology UnitUniversity of CambridgeCambridgeUK
  4. 4.Department of Medical Statistics and Epidemiology, School of Public HealthSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations