Advertisement

Consumption of a dark roast coffee blend reduces DNA damage in humans: results from a 4-week randomised controlled study

  • Dorothea SchippEmail author
  • Jana Tulinska
  • Maria Sustrova
  • Aurelia Liskova
  • Viera Spustova
  • Miroslava Lehotska Mikusova
  • Zora Krivosikova
  • Katarina Rausova
  • Andrew Collins
  • Vaineta Vebraite
  • Katarina Volkovova
  • Eva Rollerova
  • Magdalena Barancokova
  • Sergey Shaposhnikov
Original Contribution

Abstract

Purpose

To determine the DNA protective effects of a standard coffee beverage in comparison to water consumption.

Methods

The single-blind, randomised controlled study with parallel design included healthy women (n = 50) and men (n = 50) recruited from the general Central European population. The subjects were randomised in a coffee and a control group, with stratification for sex and body mass index. The study comprised two periods of 4 weeks: a preconditioning period, with daily consumption of at least 500 ml water but no coffee, nor tea, nor any other caffeine-containing product. During the subsequent intervention period the coffee group consumed 500 ml of freshly brewed dark roast coffee blend per day, the control group consumed water instead. On the last day of each period, blood was drawn and analysed by comet assay (single-cell gel electrophoresis) to assess the level of DNA damage (strand breakage).

Results

At the end of the intervention period the mean level of DNA strand breaks in the coffee group has decreased in comparison to the control group [difference in means 0.23% TI (tail intensity), p = 0.028]. The mean change from baseline (delta value) was − 23% in the coffee group (p = 0.0012). Effects of coffee intake were similar for men and women. During intervention, neither group showed any significant change in body weight or calorie intake.

Conclusions

Our results indicate that regular consumption of a dark roast coffee blend has a beneficial protective effect on human DNA integrity in both, men and women.

Keywords

Coffee Comet assay Human intervention study DNA strand breaks DNA damage 

Abbreviations

BMI

Body mass index

CQA

Caffeoylquinic acid

ITT

Intention to treat

NMP

N-Methylpyridinium

PP

Per protocol

SD

Standard deviation

TI

Tail intensity

WRST

Wilcoxon rank sum test

WSRT

Wilcoxon signed rank test

Notes

Acknowledgements

We thank Thomas Hofmann and Roman Lang (Technical University of Munich) for NMP, trigonelline and creatinine measurements (compliance), and Lubica Prochazkova, Helena Nagyova, Edita Mrvikova and Zuzana Krchnava from Slovak Medical University for technical help.

Funding

This study has been supported by Tchibo GmbH, Hamburg, Germany.

Compliance with ethical standards

Conflict of interest

D. Schipp is a self-employed statistician, who has been appointed and financed by Tchibo GmbH for this and other projects.

Ethical standards

The study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

References

  1. 1.
    Hamer M, Witte DR, Mosdøl A, Marmot MG, Brunner EJ (2008) Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: the Whitehall II study. Br J Nutr 100(5):1046–1053.  https://doi.org/10.1017/S0007114508944135 CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang W, Lopez-Garcia E, Hu FB, van Dam RM (2009) Coffee consumption and risk of cardiovascular diseases and all-cause mortality among men with type 2 diabetes. Diabetes Care 32(6):1043–1045.  https://doi.org/10.2337/dc08-2251 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bidel S, Tuomilehto J (2012) The emerging health benefits of coffee with an emphasis on type 2 diabetes and cardiovascular disease. Eur Endocrinol 9(2):99–106.  https://doi.org/10.1002/9781119949893.ch9 CrossRefGoogle Scholar
  4. 4.
    Malerba S, Turati F, Galeone C, Pelucchi C, Verga F, La Vecchia C, Tavani A (2013) A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur J Epidemiol.  https://doi.org/10.1007/s10654-013-9834-7 CrossRefPubMedGoogle Scholar
  5. 5.
    von Ruesten A, Feller S, Bergmann M, Boeing H (2013) Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPIC-Potsdam study. Eur J Clin Nutr 67(4):412–419.  https://doi.org/10.1038/ejcn.2013.7 CrossRefGoogle Scholar
  6. 6.
    Ding M, Satija A, Bhupathiraju SN, Hu Y, Sun Q, Han J, Lopez-Garcia E, Willett W, van Dam RM, Hu FB (2015) Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation 132(24):2305–2315.  https://doi.org/10.1161/circulationaha.115.017341 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bakuradze T, Lang R, Hofmann T, Stiebitz H, Bytof G, Lantz I, Baum M, Eisenbrand G, Janzowski C (2010) Antioxidant effectiveness of coffee extracts and selected constituents in cell-free systems and human colon cell lines. Mol Nutr Food Res 54(12):1734–1743.  https://doi.org/10.1002/mnfr.201000147 CrossRefPubMedGoogle Scholar
  8. 8.
    Bichler A, Cavin C, Simic T, Chakraborty A, Ferk F, Hoelzl C, Schulte-Hermann R, Kundi M, Haidinger G, Angelis K, Knasmüller S (2007) Coffee consumption protects human lymphocytes against oxidative and 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate (Trp-P-2) induced DNA-damage: results of an experimental study with human volunteers. Food Chem Toxicol 45(8):1428–1436.  https://doi.org/10.1016/j.fct.2007.02.001 CrossRefPubMedGoogle Scholar
  9. 9.
    Esposito F, Morisco F, Verde V, Ritieni A, Alezio A, Caporaso N, Fogliano V (2003) Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment Pharmacol Ther 17(4):595–601.  https://doi.org/10.1046/j.1365-2036.2003.01429.x CrossRefPubMedGoogle Scholar
  10. 10.
    Hoelzl C, Knasmüller S, Wagner K-H, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O, Desmarchelier A, Marin-Kuan M, Delatour T, Verguet C, Bezençon C, Besson A, Grathwohl D, Simic T, Kundi M, Schilter B, Cavin C (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54(12):1722–1733.  https://doi.org/10.1002/mnfr.201000048 CrossRefPubMedGoogle Scholar
  11. 11.
    Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, Lang R, Hofmann T, Marko D (2011) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 22(5):426–440.  https://doi.org/10.1016/j.jnutbio.2010.03.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis J-P, Albert FW, Stiebitz H, Bytof G, Lantz I, Baum M, Eisenbrand G (2011) Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study. Mol Nutr Food Res 55(5):793–797.  https://doi.org/10.1002/mnfr.201100093 CrossRefPubMedGoogle Scholar
  13. 13.
    Bakuradze T, Parra GAM, Riedel A, Somoza V, Lang R, Dieminger N, Hofmann T, Winkler S, Hassmann U, Marko D, Schipp D, Raedle J, Bytof G, Lantz I, Stiebitz H, Richling E (2014) Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Res Int 63(Part C):420–427.  https://doi.org/10.1016/j.foodres.2014.05.032 CrossRefGoogle Scholar
  14. 14.
    Bakuradze T, Lang R, Hofmann T, Eisenbrand G, Schipp D, Galan J, Richling E (2015) Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial. Eur J Nutr 54:149–156.  https://doi.org/10.1007/s00394-014-0696-x CrossRefPubMedGoogle Scholar
  15. 15.
    Lang R, Wahl A, Stark T, Hofmann T (2011) Urinary N-methylpyridinium and trigonelline as candidate dietary biomarkers of coffee consumption. Mol Nutr Food Res 55(11):1613–1623.  https://doi.org/10.1002/mnfr.201000656 CrossRefPubMedGoogle Scholar
  16. 16.
    Akor-Dewu MB, El Yamani N, Bilyk O, Holtung L, Tjelle TE, Blomhoff R, Collins AR (2014) Leucocytes isolated from simply frozen whole blood can be used in human biomonitoring for DNA damage measurement with the comet assay. Cell Biochem Funct 32(3):299–302.  https://doi.org/10.1002/cbf.3016 CrossRefPubMedGoogle Scholar
  17. 17.
    Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Štětina R (2008) The comet assay: topical issues. Mutagenesis 23(3):143–151.  https://doi.org/10.1093/mutage/gem051 CrossRefPubMedGoogle Scholar
  18. 18.
    EFSA Panel on Dietetic Products Nutrition and Allergies (2015) Scientific opinion on the safety of caffeine. EFSA J 13(5):4102.  https://doi.org/10.2903/j.efsa.2015.4102 CrossRefGoogle Scholar
  19. 19.
    Valverde M, Rojas E (2009) Environmental and occupational biomonitoring using the Comet assay. Mutat Res Rev Mutat Res 681(1):93–109.  https://doi.org/10.1016/j.mrrev.2008.11.001 CrossRefGoogle Scholar
  20. 20.
    Lu Y, Morimoto K, Nakayama K (2006) Health practices and leukocyte DNA damage in Japanese hard-metal workers. Prev Med 43(2):140–144.  https://doi.org/10.1016/j.ypmed.2006.03.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J (2017) Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359:j5024.  https://doi.org/10.1136/bmj.j5024 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Misík M, Hoelzl C, Wagner K-H, Cavin C, Moser B, Kundi M, Simic T, Elbling L, Kager N, Ferk F, Ehrlich V, Nersesyan A, Dusinská M, Schilter B, Knasmüller S (2010) Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial. Mutat Res Fundam Mol Mech Mutagen 692:42–48.  https://doi.org/10.1016/j.mrfmmm.2010.08.003 CrossRefGoogle Scholar
  23. 23.
    Martini D, Del Bo C, Tassotti M, Riso P, Del Rio D, Brighenti F, Porrini M (2016) Coffee consumption and oxidative stress: a review of human intervention studies. Molecules 21(8):979.  https://doi.org/10.3390/molecules21080979 CrossRefGoogle Scholar
  24. 24.
    Paur I, Balstad TR, Blomhoff R (2010) Degree of roasting is the main determinant of the effect of coffee on NF-kB and EpRE. J Free Radic Biol Med 48(9):1218–1227.  https://doi.org/10.1016/j.freeradbiomed.2010.02.005 CrossRefGoogle Scholar
  25. 25.
    Shaposhnikov S, Hatzold T, Yamani NE, Stavro PM, Lorenzo Y, Dusinska M, Reus A, Pasman W, Collins A (2018) Coffee and oxidative stress: a human intervention study. Eur J Nutr 57(2):533–544.  https://doi.org/10.1007/s00394-016-1336-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dorothea Schipp
    • 4
    Email author return OK on get
  • Jana Tulinska
    • 1
  • Maria Sustrova
    • 1
  • Aurelia Liskova
    • 1
  • Viera Spustova
    • 1
  • Miroslava Lehotska Mikusova
    • 1
  • Zora Krivosikova
    • 1
  • Katarina Rausova
    • 2
  • Andrew Collins
    • 3
  • Vaineta Vebraite
    • 3
  • Katarina Volkovova
    • 3
  • Eva Rollerova
    • 2
  • Magdalena Barancokova
    • 1
  • Sergey Shaposhnikov
    • 3
  1. 1.Medical FacultySlovak Medical UniversityBratislavaSlovakia
  2. 2.Faculty of Public HealthSlovak Medical UniversityBratislavaSlovakia
  3. 3.Norgenotech ASSkreiaNorway
  4. 4.Statistical ConsultingRosenthal-BielatalGermany

Personalised recommendations