Estimation of salt intake and excretion in children in one region of Switzerland: a cross-sectional study

  • Magali Rios-LeyvrazEmail author
  • Pascal Bovet
  • Murielle Bochud
  • Bernard Genin
  • Michel Russo
  • Michel F. Rossier
  • René Tabin
  • Arnaud Chiolero
Original Contribution



Salt intake among children in Switzerland is unknown. The objectives of this study were to determine salt excretion and to identify the main dietary sources of salt intake among children in one region of Switzerland.


We conducted a cross-sectional study using a convenient sample of children 6–16 years of age in Valais, Switzerland, between 2016 and 2018. All children visiting several regional health care providers and without any clinical condition that could affect sodium intake or excretion were eligible. Each child completed a 24-h urine collection to assess salt excretion and two dietary questionnaires to assess dietary sources of salt intake. Weight and height were measured.


Data were available on 94 children (55 boys and 39 girls; mean age 10.5 years; age range 6–16 years). The mean 24-h salt urinary excretion was 5.9 g [SD 2.8; range 0.8–16.0; 95% confidence interval (CI) 5.3–6.5]. Two-thirds (62%) of the children had salt excretions above recommendations of maximum intake (i.e., ≥ 2 g per day for children up to 6 years of age and ≥ 5 g per day for children 7–16 years of age). The salt excretion tended to be higher during the week-end (6.0 g, 95% CI 5.4–6.6) than during the week (5.4 g, 95% CI 4.3–6.7). The main sources of salt intake were pastas, potatoes, and rice (23% of total salt intake), pastries (16%), bread (16%), and cured meats (10%). One child out of three (34%) added salt to their plate at the table.


Salt intake in children in one region of Switzerland was high. Our findings suggest that salt intake in children could be reduced by lowering salt content in commonly eaten foods.

Trial registration number



Salt Sodium chloride Urinary excretion Children Adolescents Food frequency questionnaire Switzerland 



We thank the participants and their parents for taking part in the study and Mrs Marie-France Rudaz and her team for the laboratory analyses.


This work was funded by the Swiss Federal Food Safety and Veterinary Office (FSVO) (funding reference number 5.15.03). The funder had no role in the protocol development, data collection, data analysis, interpretation or publication of the results.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

394_2018_1845_MOESM1_ESM.pdf (231 kb)
Supplementary material 1 (PDF 231 KB)


  1. 1.
    Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J, Global burden of diseases N, Chronic Diseases Expert (2014) Global sodium consumption and death from cardiovascular causes. N Engl J Med 371(7):624–634. CrossRefPubMedGoogle Scholar
  2. 2.
    He FJ, Li J, Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 346:f1325. CrossRefPubMedGoogle Scholar
  3. 3.
    Graudal NA, Hubeck-Graudal T, Jürgens G (2012) Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane review). Am J Hypertens 25(1):1–15. CrossRefPubMedGoogle Scholar
  4. 4.
    Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85(2):679–715. CrossRefPubMedGoogle Scholar
  5. 5.
    Leyvraz M, Chatelan A, da Costa BR, Taffe P, Paradis G, Bovet P, Bochud M, Chiolero A (2018) Sodium intake and blood pressure in children and adolescents: a systematic review and meta-analysis of experimental and observational studies. Int J Epidemiol. CrossRefPubMedGoogle Scholar
  6. 6.
    Chen X, Wang Y (2008) Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation 117(25):3171–3180. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chiolero A, Cachat F, Burnier M, Paccaud F, Bovet P (2007) Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight. J Hypertens 25(11):2209–2217. CrossRefPubMedGoogle Scholar
  8. 8.
    McCrindle BW (2010) Assessment and management of hypertension in children and adolescents. Nat Rev Cardiol 7(3):155–163. CrossRefPubMedGoogle Scholar
  9. 9.
    Chiolero A, Bovet P, Paradis G (2013) Screening for elevated blood pressure in children and adolescents: a critical appraisal. JAMA Pediatr 167(3):266–273. CrossRefPubMedGoogle Scholar
  10. 10.
    Lipsky LM, Haynie DL, Liu D, Chaurasia A, Gee B, Li K, Iannotti RJ, Simons-Morton B (2015) Trajectories of eating behaviors in a nationally representative cohort of US adolescents during the transition to young adulthood. Int J Behav Nutr Phys Act 12:138. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Labarthe DR (1999) Prevention of cardiovascular risk factors in the first place. Prev Med 29(6 Pt 2):S72–S78. CrossRefPubMedGoogle Scholar
  12. 12.
    Gillman MW (2015) Primordial prevention of cardiovascular disease. Circulation 131(7):599–601. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    World Health Organization (2012) Guideline: sodium intake for adults and children. World Health Organization (WHO), GenevaGoogle Scholar
  14. 14.
    Chappuis A, Bochud M, Glatz N, Vuistiner P, Paccaud F, Burnier M (2011) Swiss survey on salt intake: main results. Service de Néphrologie et Institut Universitaire de Médecine Sociale et Préventive, Centre Hospitalier Universitaire Vaudois (CHUV), LausanneGoogle Scholar
  15. 15.
    Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, Damasceno A, Delles C, Gimenez-Roqueplo AP, Hering D, Lopez-Jaramillo P, Martinez F, Perkovic V, Rietzschel ER, Schillaci G, Schutte AE, Scuteri A, Sharman JE, Wachtell K, Wang JG (2016) A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet 388(10060):2665–2712. CrossRefPubMedGoogle Scholar
  16. 16.
    Grimes CA, Riddell LJ, Campbell KJ, Nowson CA (2013) Dietary salt intake, sugar-sweetened beverage consumption, and obesity risk. Pediatrics 131(1):14–21. CrossRefPubMedGoogle Scholar
  17. 17.
    Tian N, Zhang Z, Loustalot F, Yang Q, Cogswell ME (2013) Sodium and potassium intakes among US infants and preschool children, 2003–2010. Am J Clin Nutr 98(4):1113–1122. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cogswell ME, Wang CY, Chen TC, Pfeiffer CM, Elliott P, Gillespie CD, Carriquiry AL, Sempos CT, Liu K, Perrine CG, Swanson CA, Caldwell KL, Loria CM (2013) Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y. Am J Clin Nutr 98(6):1502–1513. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cooper R, Liu K, Trevisan M, Miller W, Stamler J (1983) Urinary sodium excretion and blood pressure in children: absence of a reproducible association. Hypertension 5(1):135–139CrossRefGoogle Scholar
  20. 20.
    Cooper R, Soltero I, Liu K, Berkson D, Levinson S, Stamler J (1980) The association between urinary sodium excretion and blood pressure in children. Circulation 62(1):97–104CrossRefGoogle Scholar
  21. 21.
    Liu K, Cooper R, Soltero I, Stamler J (1979) Variability in 24-hour urine sodium excretion in children. Hypertension 1(6):631–636CrossRefGoogle Scholar
  22. 22.
    Jaffé M (1886) Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaktion des Kreatinins. Z Physiol Chem 10:391–400Google Scholar
  23. 23.
    Bühler E, Lachenmeier DW, Schlegel K, Winkler G (2014) Development of a tool to assess the caffeine intake among teenagers and young adults. Ernaehrungs Umschau 4:58–63Google Scholar
  24. 24.
    Ebenegger V, Marques-Vidal P, Barral J, Kriemler S, Puder JJ, Nydegger A (2010) Eating habits of preschool children with high migrant status in Switzerland according to a new food frequency questionnaire. Nutr Res 30(2):104–109. CrossRefPubMedGoogle Scholar
  25. 25.
    Palacios C, Wigertz K, Martin BR, Jackman L, Pratt JH, Peacock M, McCabe G, Weaver CM (2004) Sodium retention in black and white female adolescents in response to salt intake. J Clin Endocrinol Metab 89(4):1858–1863. CrossRefPubMedGoogle Scholar
  26. 26.
    Cogswell ME, Maalouf J, Elliott P, Loria CM, Patel S, Bowman BA (2015) Use of urine biomarkers to assess sodium intake: challenges and opportunities. Annu Rev Nutr 35:349–387. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bates GP, Miller VS (2008) Sweat rate and sodium loss during work in the heat. J Occup Med Toxicol 3:4. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Remer T, Neubert A, Maser-Gluth C (2002) Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr 75(3):561–569CrossRefGoogle Scholar
  29. 29.
    Lava SAG, Bucher BS, Bianchettia MG, Simonetti GD (2014) Consommation de sel chez les enfants. Forum Med Suisse 14(10):191–194CrossRefGoogle Scholar
  30. 30.
    Federal Food Safety and Veterinary Office Swiss Food Composition Database V5.2Google Scholar
  31. 31.
    Morabia A, Bernstein M, Kumanyika S, Sorenson A, Mabiala I, Prodolliet B, Rolfo I, Luong BL (1994) Développement et validation d’un questionnaire alimentaire semi-quantitatif à partir d’une enquête de population. Soz Pravent 39(6):345–369CrossRefGoogle Scholar
  32. 32.
    Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11(246):1–190Google Scholar
  33. 33.
    European Food Safety Authority (EFSA) (2017) Public consultation on the scientific opinion on dietary reference values for sodium (intermediate draft) and related protocolGoogle Scholar
  34. 34.
    Aparicio A, Rodríguez-Rodríguez E, Cuadrado-Soto E, Navia B, López-Sobaler AM, Ortega RM (2015) Estimation of salt intake assessed by urinary excretion of sodium over 24 h in Spanish subjects aged 7–11 years. Eur J Nutr 56(1):171–178CrossRefGoogle Scholar
  35. 35.
    Oliveira AC, Padrao P, Moreira A, Pinto M, Neto M, Santos T, Madureira J, Fernandes Ede O, Graca P, Breda J, Moreira P (2015) Potassium urinary excretion and dietary intake: a cross-sectional analysis in 8–10 year-old children. BMC Pediatr 15:60. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Campanozzi A, Avallone S, Barbato A, Iacone R, Russo O, De Filippo G, D’Angelo G, Pensabene L, Malamisura B, Cecere G, Micillo M, Francavilla R, Tetro A, Lombardi G, Tonelli L, Castellucci G, Ferraro L, Di Biase R, Lezo A, Salvatore S, Paoletti S, Siani A, Galeone D, Strazzullo P (2015) High sodium and low potassium intake among Italian children: relationship with age, body mass and blood pressure. PLoS One 10(4):e0121183. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Elmadfa I, Hasenegger V, Wagner K, Putz P, Weidl NM, Wottawa D, Kuen T, Seiringer G, Meyer AK, Sturtzel B, Kiefer I, Zilberszac A, Sgarabottolo V, Meidlinger B (2012) Österreichischer Ernährungsbericht 2012. ViennaGoogle Scholar
  38. 38.
    Quader ZS, Gillespie C, Sliwa SA, Ahuja JK, Burdg JP, Moshfegh A, Pehrsson PR, Gunn JP, Mugavero K, Cogswell ME (2017) Sodium intake among US school-aged children: National Health and Nutrition Examination Survey, 2011–2012. J Acad Nutr Diet 117(1):39–47 e35. CrossRefPubMedGoogle Scholar
  39. 39.
    Ni Mhurchu C, Capelin C, Dunford EK, Webster JL, Neal BC, Jebb SA (2011) Sodium content of processed foods in the United Kingdom: analysis of 44,000 foods purchased by 21,000 households. Am J Clin Nutr 93(3):594–600. CrossRefPubMedGoogle Scholar
  40. 40.
    Capuano E, der Veer G, Verheijen PJJ, Heenan SP, van de Laak LFJ, Koopmans HBM, van Ruth SM (2013) Comparison of a sodium-based and a chloride-based approach for the determination of sodium chloride content of processed foods in The Netherlands. J Food Compost Anal 31(1):129–136CrossRefGoogle Scholar
  41. 41.
    Kloss L, Meyer JD, Graeve L, Vetter W (2015) Sodium intake and its reduction by food reformulation in the European Union—a review. NJS J 1:9–19Google Scholar
  42. 42.
    World Health Organization (2013) Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Health Organization, GenevaGoogle Scholar
  43. 43.
    Wang G, Labarthe D (2011) The cost-effectiveness of interventions designed to reduce sodium intake. J Hypertens 29(9):1693–1699. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Swiss Federal Food Safety and Veterinary Office (2015) Moins de sel dans le pain en SuisseGoogle Scholar
  45. 45.
    Schachter J, Harper PH, Radin ME, Caggiula AW, McDonald RH, Diven WF (1980) Comparison of sodium and potassium intake with excretion. Hypertension 2(5):695–699CrossRefGoogle Scholar
  46. 46.
    Holbrook JT, Patterson KY, Bodner JE, Douglas LW, Veillon C, Kelsay JL, Mertz W, Smith JC Jr (1984) Sodium and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr 40(4):786–793CrossRefGoogle Scholar
  47. 47.
    Rakova N, Juttner K, Dahlmann A, Schroder A, Linz P, Kopp C, Rauh M, Goller U, Beck L, Agureev A, Vassilieva G, Lenkova L, Johannes B, Wabel P, Moissl U, Vienken J, Gerzer R, Eckardt KU, Muller DN, Kirsch K, Morukov B, Luft FC, Titze J (2013) Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab 17(1):125–131. CrossRefPubMedGoogle Scholar
  48. 48.
    Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S (2014) Good practices for quantitative bias analysis. Int J Epidemiol 43(6):1969–1985. CrossRefGoogle Scholar
  49. 49.
    McLean RM, Farmer VL, Nettleton A, Cameron CM, Cook NR, Campbell NRC, Consortium T (2017) Assessment of dietary sodium intake using a food frequency questionnaire and 24-hour urinary sodium excretion: a systematic literature review. J Clin Hypertens (Greenwich) 19(12):1214–1230. CrossRefGoogle Scholar
  50. 50.
    Olde Engberink RHG, van den Hoek TC, van Noordenne ND, van den Born BH, Peters-Sengers H, Vogt L (2017) Use of a single baseline versus multiyear 24-hour urine collection for estimation of long-term sodium intake and associated cardiovascular and renal risk. Circulation 136(10):917–926. CrossRefPubMedGoogle Scholar
  51. 51.
    Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, Diaz R, Avezum A, Lopez-Jaramillo P, Lanas F, Li W, Lu Y, Yi S, Rensheng L, Iqbal R, Mony P, Yusuf R, Yusoff K, Szuba A, Oguz A, Rosengren A, Bahonar A, Yusufali A, Schutte AE, Chifamba J, Mann JF, Anand SS, Teo K, Yusuf S, Pure E, Investigators OT (2016) Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388(10043):465–475. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Social and Preventive Medicine (IUMSP)Lausanne University Hospital (CHUV)LausanneSwitzerland
  2. 2.Hospital Center of Valais RomandHospital of ValaisSionSwitzerland
  3. 3.Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  4. 4.Central Institute of the HospitalsHospital of ValaisSionSwitzerland
  5. 5.Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
  6. 6.Department of Epidemiology, Biostatistics and Occupational HealthMcGill UniversityMontrealCanada

Personalised recommendations