Advertisement

Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats

  • Mathilde Guerville
  • M. Kristina Hamilton
  • Charlotte C. Ronveaux
  • Sandrine Ellero-Simatos
  • Helen E. Raybould
  • Gaëlle Boudry
Original Contribution

Abstract

Purpose

Reduced ability of cholecystokinin (CCK) to induce satiation contributes to hyperphagia and weight gain in high-fat/high-sucrose (HF/HS) diet-induced obesity, and has been linked to altered gut microbiota. Rodent models of obesity use chow or low-fat (LF) diets as control diets; the latter has been shown to alter gut microbiota and metabolome. We aimed to determine whether LF-diet consumption impacts CCK satiation in rats and if so, whether this is prevented by addition of inulin to LF diet.

Methods

Rats (n = 40) were fed, for 8 weeks, a chow diet (chow) or low-fat (10%) or high-fat/high-sucrose (45 and 17%, respectively) refined diets with either 10% cellulose (LF and HF/HS) or 10% inulin (LF-I and HF/HS-I). Caecal metabolome was assessed by 1H-NMR-based metabolomics. CCK satiation was evaluated by measuring the suppression of food intake after intraperitoneal CCK injection (1 or 3 µg/kg).

Results

LF-diet consumption altered the caecal metabolome, reduced caecal weight, and increased IAP activity, compared to chow. CCK-induced inhibition of food intake was abolished in LF diet-fed rats compared to chow-fed rats, while HF/HS diet-fed rats responded only to the highest CCK dose. Inulin substitution ameliorated caecal atrophy, reduced IAP activity, and modulated caecal metabolome, but did not improve CCK-induced satiety in either LF- or HF/HS-fed rats.

Conclusions

CCK signaling is impaired by LF-diet consumption, highlighting that caution must be taken when using LF diet until a more suitable refined control diet is identified.

Keywords

Obesity Gut-brain axis Metabolomics Vagal afferents Food intake 

Notes

Acknowledgements

The authors would like to thank Cécile Canlet from the French National Infrastructure of Metabolomics and Fluxomics (MetaboHUB-ANR-11-INBS-0010) for her help with the NMR facility and Dr. Olivier Cloarec from Korrigan Sciences Limited for providing the matlab functions for analysis of NMR data. They also want to thank Ricky Stephens for his help in animal experiment.

Author contributions

MG, MKH, CCR, HER, and GB designed research; MG, MKH, CCR, and SES conducted research; MG and SES analyzed data; MG, MKH, SES, HER, and GB wrote the paper. GB had primarily responsibility for final content. All authors read and approved final version.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

394_2018_1802_MOESM1_ESM.tif (153 kb)
S1 Fig. 1. Assigned 600 MHz 1D NMR spectra of mouse caecal content. The 5–9 ppm region was vertically expanded six times compared to the 0–4.5 ppm region. Keys: 1: bile acids (mixed), 2: butyrate, 3: leucine, 4: isoleucine, 5: valine, 6: propionate, 7: α-ketoisovalerate, 8: ethanol, 9: β-hydroxybutyrate, 10: lipids, 11: lactate, 12: alanine, 13: lysine, 14: acetate, 15: N-acetyl groups, 16: glutamate, 17: succinate, 18: α-ketoglutarate, 19: aspartate, 20: choline, 21: taurine, 22: β-xylose, 23: β-galactose, 24: β-glucose, 25: α-arabinose, 26: α-xylose, 27: α-glucose, 28: α-galactose, 29: uracil, 30: tyrosine, 31: phenylalanine, 32: adenine, 33: hypoxanthine, and 34: formate. (TIF 152 KB)
394_2018_1802_MOESM2_ESM.docx (15 kb)
S2 Table 1. Correlation coefficients (DOCX 15 KB)

References

  1. 1.
    Dockray GJ (2014) Gastrointestinal hormones and the dialogue between gut and brain: gut-brain signalling. J Physiol 592:2927–2941.  https://doi.org/10.1113/jphysiol.2014.270850 CrossRefGoogle Scholar
  2. 2.
    Raybould HE (2007) Mechanisms of CCK signaling from gut to brain. Curr Opin Pharmacol 7:570–574.  https://doi.org/10.1016/j.coph.2007.09.006 CrossRefGoogle Scholar
  3. 3.
    de Lartigue G, Dimaline R, Varro A, Dockray GJ (2007) Cocaine- and amphetamine-regulated transcript: stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin. J Neurosci 27:2876–2882.  https://doi.org/10.1523/JNEUROSCI.5508-06.2007 CrossRefGoogle Scholar
  4. 4.
    Campos CA, Wright JS, Czaja K, Ritter RC (2012) CCK-induced reduction of food intake and hindbrain MAPK signaling are mediated by NMDA receptor activation. Endocrinology 153:2633–2646.  https://doi.org/10.1210/en.2012-1025 CrossRefGoogle Scholar
  5. 5.
    de Lartigue G, Barbier de la Serre C, Espero E et al (2012) Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS One 7:e32967.  https://doi.org/10.1371/journal.pone.0032967 CrossRefGoogle Scholar
  6. 6.
    Duca FA, Zhong L, Covasa M (2013) Reduced CCK signaling in obese-prone rats fed a high fat diet. Horm Behav 64:812–817.  https://doi.org/10.1016/j.yhbeh.2013.09.004 CrossRefGoogle Scholar
  7. 7.
    Warden CH, Fisler JS (2008) Comparisons of diets used in animal models of high-fat feeding. Cell Metab 7:277.  https://doi.org/10.1016/j.cmet.2008.03.014 CrossRefGoogle Scholar
  8. 8.
    Pellizzon MA, Ricci MR (2018) The common use of improper control diets in diet-induced metabolic disease research confounds data interpretation: the fiber factor. Nutr Metab.  https://doi.org/10.1186/s12986-018-0243-5 Google Scholar
  9. 9.
    Chassaing B, Miles-Brown J, Pellizzon M et al (2015) Lack of soluble fiber drives diet-induced adiposity in mice. Am J Physiol Gastrointest Liver Physiol 309:G528–G541.  https://doi.org/10.1152/ajpgi.00172.2015 CrossRefGoogle Scholar
  10. 10.
    Dalby MJ, Ross AW, Walker AW, Morgan PJ (2017) Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Rep 21:1521–1533.  https://doi.org/10.1016/j.celrep.2017.10.056 CrossRefGoogle Scholar
  11. 11.
    Vaughn AC, Cooper EM, DiLorenzo PM et al (2017) Energy-dense diet triggers changes in gut microbiota, reorganization of gut–brain vagal communication and increases body fat accumulation. Acta Neurobiol Exp (Warsz) 77:18–30Google Scholar
  12. 12.
    Sen T, Cawthon CR, Ihde BT et al (2017) Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav 173:305–317.  https://doi.org/10.1016/j.physbeh.2017.02.027 CrossRefGoogle Scholar
  13. 13.
    Guerville M, Boudry G (2016) Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol 311:G1–G15.  https://doi.org/10.1152/ajpgi.00098.2016 CrossRefGoogle Scholar
  14. 14.
    de Lartigue G, Barbier de la Serre C, Espero E et al (2011) Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 301:E187–E195.  https://doi.org/10.1152/ajpendo.00056.2011 CrossRefGoogle Scholar
  15. 15.
    de La Serre CB, de Lartigue G, Raybould HE (2015) Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol Behav 139:188–194.  https://doi.org/10.1016/j.physbeh.2014.10.032 CrossRefGoogle Scholar
  16. 16.
    Cawthon CR, de La Serre CB (2018) Gut bacteria interaction with vagal afferents. Brain Res.  https://doi.org/10.1016/j.brainres.2018.01.012 Google Scholar
  17. 17.
    Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Metabolite projection analysis for fast identification of metabolites in metabonomics. Application in an amiodarone study. Anal Chem 78:3551–3561.  https://doi.org/10.1021/ac0518351 CrossRefGoogle Scholar
  18. 18.
    Veselkov KA, Lindon JC, Ebbels TMD et al (2009) Recursive segment-wise peak alignment of biological 1H NMR spectra for improved metabolic biomarker recovery. Anal Chem 81:56–66.  https://doi.org/10.1021/ac8011544 CrossRefGoogle Scholar
  19. 19.
    Cloarec O, Dumas ME, Trygg J et al (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 77:517–526.  https://doi.org/10.1021/ac048803i CrossRefGoogle Scholar
  20. 20.
    Estaki M, DeCoffe D, Gibson DL (2014) Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 20:15650–15656.  https://doi.org/10.3748/wjg.v20.i42.15650 CrossRefGoogle Scholar
  21. 21.
    Benoit B, Plaisancié P, Awada M et al (2013) High-fat diet action on adiposity, inflammation, and insulin sensitivity depends on the control low-fat diet. Nutr Res 33:952–960.  https://doi.org/10.1016/j.nutres.2013.07.017 CrossRefGoogle Scholar
  22. 22.
    Apolzan JW, Harris RBS (2012) Differential effects of chow and purified diet on the consumption of sucrose solution and lard and the development of obesity. Physiol Behav 105:325–331.  https://doi.org/10.1016/j.physbeh.2011.08.023 CrossRefGoogle Scholar
  23. 23.
    Vasselli JR, Scarpace PJ, Harris RBS, Banks WA (2013) Dietary components in the development of leptin resistance. Adv Nutr Bethesda Md 4:164–175.  https://doi.org/10.3945/an.112.003152 CrossRefGoogle Scholar
  24. 24.
    Guerville M, Leroy A, Sinquin A et al (2017) Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. Am J Physiol Endocrinol Metab 313:E107–E120.  https://doi.org/10.1152/ajpendo.00372.2016 CrossRefGoogle Scholar
  25. 25.
    Lallès J-P (2014) Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 72:82–94.  https://doi.org/10.1111/nure.12082 CrossRefGoogle Scholar
  26. 26.
    Storr M, Vogel HJ, Schicho R (2013) Metabolomics: is it useful for inflammatory bowel diseases? Curr Opin Gastroenterol 29:378–383.  https://doi.org/10.1097/MOG.0b013e328361f488 CrossRefGoogle Scholar
  27. 27.
    Hong Y-S, Ahn Y-T, Park J-C et al (2010) 1H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model. Arch Pharm Res 33:1091–1101.  https://doi.org/10.1007/s12272-010-0716-1 CrossRefGoogle Scholar
  28. 28.
    Bjerrum JT, Wang Y, Hao F et al (2015) Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11:122–133.  https://doi.org/10.1007/s11306-014-0677-3 CrossRefGoogle Scholar
  29. 29.
    Adam CL, Williams PA, Dalby MJ et al (2014) Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutr Metab 11:36.  https://doi.org/10.1186/1743-7075-11-36 CrossRefGoogle Scholar
  30. 30.
    Adam CL, Williams PA, Garden KE et al (2015) Dose-dependent effects of a soluble dietary fibre (Pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats. PLoS One 10:e0115438.  https://doi.org/10.1371/journal.pone.0115438 CrossRefGoogle Scholar
  31. 31.
    Levrat M-A, Rémésy C, Demigné C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121:1730–1737.  https://doi.org/10.1093/jn/121.11.1730 CrossRefGoogle Scholar
  32. 32.
    Respondek F, Gerard P, Bossis M et al (2013) Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS One 8:e71026.  https://doi.org/10.1371/journal.pone.0071026 CrossRefGoogle Scholar
  33. 33.
    Neyrinck AM, Van Hée VF, Piront N et al (2012) Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes 2:e28–e28.  https://doi.org/10.1038/nutd.2011.24 CrossRefGoogle Scholar
  34. 34.
    Nicolucci AC, Hume MP, Martínez I et al (2017) Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153:711–722.  https://doi.org/10.1053/j.gastro.2017.05.055 CrossRefGoogle Scholar
  35. 35.
    Brooks L, Viardot A, Tsakmaki A et al (2017) Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab 6:48–60.  https://doi.org/10.1016/j.molmet.2016.10.011 CrossRefGoogle Scholar
  36. 36.
    Zou J, Chassaing B, Singh V et al (2018) Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23:41–53.e4.  https://doi.org/10.1016/j.chom.2017.11.003 CrossRefGoogle Scholar
  37. 37.
    Dewulf EM, Cani PD, Claus SP et al (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:1112–1121.  https://doi.org/10.1136/gutjnl-2012-303304 CrossRefGoogle Scholar
  38. 38.
    Hamilton MK, Ronveaux CC, Rust BM et al (2017) Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice. Am J Physiol Gastrointest Liver Physiol 312:G474–G487.  https://doi.org/10.1152/ajpgi.00427.2016 CrossRefGoogle Scholar
  39. 39.
    Goto H, Takemura N, Ogasawara T et al (2010) Effects of fructo-oligosaccharide on DSS-induced colitis differ in mice fed nonpurified and purified diets 1,2. J Nutr 140:2121–2127.  https://doi.org/10.3945/jn.110.125948 CrossRefGoogle Scholar
  40. 40.
    Miles JP, Zou J, Kumar M-V et al (2017) Supplementation of low- and high-fat diets with fermentable fiber exacerbates severity of DSS-induced acute colitis. Inflamm Bowel Dis 23:1133–1143.  https://doi.org/10.1097/MIB.0000000000001155 CrossRefGoogle Scholar
  41. 41.
    Van den Abbeele P, Gérard P, Rabot S et al (2011) Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats: prebiotics modulate mucosal and luminal microbiota summary. Environ Microbiol 13:2667–2680.  https://doi.org/10.1111/j.1462-2920.2011.02533.x CrossRefGoogle Scholar
  42. 42.
    Cani PD, Possemiers S, Van de Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103.  https://doi.org/10.1136/gut.2008.165886 CrossRefGoogle Scholar
  43. 43.
    Dai Z-L, Wu G, Zhu W-Y (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci Landmark Ed 16:1768–1786CrossRefGoogle Scholar
  44. 44.
    Juśkiewicz J, Zduńczyk Z (2004) Effects of cellulose, carboxymethylcellulose and inulin fed to rats as single supplements or in combinations on their caecal parameters. Comp Biochem Physiol A Mol Integr Physiol 139:513–519.  https://doi.org/10.1016/j.cbpb.2004.10.015 CrossRefGoogle Scholar
  45. 45.
    Salazar N, Dewulf EM, Neyrinck AM et al (2015) Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr 34:501–507.  https://doi.org/10.1016/j.clnu.2014.06.001 CrossRefGoogle Scholar
  46. 46.
    Teixeira TFS, Grześkowiak Ł, Franceschini SCC et al (2013) Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. Br J Nutr 109:914–919.  https://doi.org/10.1017/S0007114512002723 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mathilde Guerville
    • 1
  • M. Kristina Hamilton
    • 2
  • Charlotte C. Ronveaux
    • 2
  • Sandrine Ellero-Simatos
    • 3
  • Helen E. Raybould
    • 2
  • Gaëlle Boudry
    • 1
  1. 1.Institut Numecan, INRA INSERM Univ Rennes 1Saint-GillesFrance
  2. 2.Department of Anatomy, Physiology and Cell BiologyUC Davis School of Veterinary MedicineDavisUSA
  3. 3.Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPSToulouseFrance

Personalised recommendations